28 Algorithms library [algorithms]

28.7 Sorting and related operations [alg.sorting]

28.7.6 Set operations on sorted structures [alg.set.operations]

28.7.6.3 set_­intersection [set.intersection]

template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_intersection(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class ForwardIterator> ForwardIterator set_intersection(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, ForwardIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_intersection(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class ForwardIterator, class Compare> ForwardIterator set_intersection(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, ForwardIterator result, Compare comp);

Requires: The resulting range shall not overlap with either of the original ranges.

Effects: Constructs a sorted intersection of the elements from the two ranges; that is, the set of elements that are present in both of the ranges.

Returns: The end of the constructed range.

Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

Remarks: If [first1, last1) contains m elements that are equivalent to each other and [first2, last2) contains n elements that are equivalent to them, the first min(m,n) elements shall be copied from the first range to the output range, in order.