The header <memory> defines several types and function templates that describe properties of pointers and pointer-like types, manage memory for containers and other template types, destroy objects, and construct multiple objects in uninitialized memory buffers ([pointer.traits]–[specialized.algorithms]). The header also defines the templates unique_ptr, shared_ptr, weak_ptr, and various function templates that operate on objects of these types ([smartptr]).
namespace std { // [pointer.traits], pointer traits template <class Ptr> struct pointer_traits; template <class T> struct pointer_traits<T*>; // [util.dynamic.safety], pointer safety enum class pointer_safety { relaxed, preferred, strict }; void declare_reachable(void* p); template <class T> T* undeclare_reachable(T* p); void declare_no_pointers(char* p, size_t n); void undeclare_no_pointers(char* p, size_t n); pointer_safety get_pointer_safety() noexcept; // [ptr.align], pointer alignment function void* align(size_t alignment, size_t size, void*& ptr, size_t& space); // [allocator.tag], allocator argument tag struct allocator_arg_t { explicit allocator_arg_t() = default; }; inline constexpr allocator_arg_t allocator_arg{}; // [allocator.uses], uses_allocator template <class T, class Alloc> struct uses_allocator; // [allocator.traits], allocator traits template <class Alloc> struct allocator_traits; // [default.allocator], the default allocator template <class T> class allocator; template <class T, class U> bool operator==(const allocator<T>&, const allocator<U>&) noexcept; template <class T, class U> bool operator!=(const allocator<T>&, const allocator<U>&) noexcept; // [specialized.algorithms], specialized algorithms template <class T> constexpr T* addressof(T& r) noexcept; template <class T> const T* addressof(const T&&) = delete; template <class ForwardIterator> void uninitialized_default_construct(ForwardIterator first, ForwardIterator last); template <class ExecutionPolicy, class ForwardIterator> void uninitialized_default_construct(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator first, ForwardIterator last); template <class ForwardIterator, class Size> ForwardIterator uninitialized_default_construct_n(ForwardIterator first, Size n); template <class ExecutionPolicy, class ForwardIterator, class Size> ForwardIterator uninitialized_default_construct_n(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator first, Size n); template <class ForwardIterator> void uninitialized_value_construct(ForwardIterator first, ForwardIterator last); template <class ExecutionPolicy, class ForwardIterator> void uninitialized_value_construct(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator first, ForwardIterator last); template <class ForwardIterator, class Size> ForwardIterator uninitialized_value_construct_n(ForwardIterator first, Size n); template <class ExecutionPolicy, class ForwardIterator, class Size> ForwardIterator uninitialized_value_construct_n(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator first, Size n); template <class InputIterator, class ForwardIterator> ForwardIterator uninitialized_copy(InputIterator first, InputIterator last, ForwardIterator result); template <class ExecutionPolicy, class InputIterator, class ForwardIterator> ForwardIterator uninitialized_copy(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] InputIterator first, InputIterator last, ForwardIterator result); template <class InputIterator, class Size, class ForwardIterator> ForwardIterator uninitialized_copy_n(InputIterator first, Size n, ForwardIterator result); template <class ExecutionPolicy, class InputIterator, class Size, class ForwardIterator> ForwardIterator uninitialized_copy_n(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] InputIterator first, Size n, ForwardIterator result); template <class InputIterator, class ForwardIterator> ForwardIterator uninitialized_move(InputIterator first, InputIterator last, ForwardIterator result); template <class ExecutionPolicy, class InputIterator, class ForwardIterator> ForwardIterator uninitialized_move(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] InputIterator first, InputIterator last, ForwardIterator result); template <class InputIterator, class Size, class ForwardIterator> pair<InputIterator, ForwardIterator> uninitialized_move_n(InputIterator first, Size n, ForwardIterator result); template <class ExecutionPolicy, class InputIterator, class Size, class ForwardIterator> pair<InputIterator, ForwardIterator> uninitialized_move_n(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] InputIterator first, Size n, ForwardIterator result); template <class ForwardIterator, class T> void uninitialized_fill(ForwardIterator first, ForwardIterator last, const T& x); template <class ExecutionPolicy, class ForwardIterator, class T> void uninitialized_fill(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator first, ForwardIterator last, const T& x); template <class ForwardIterator, class Size, class T> ForwardIterator uninitialized_fill_n(ForwardIterator first, Size n, const T& x); template <class ExecutionPolicy, class ForwardIterator, class Size, class T> ForwardIterator uninitialized_fill_n(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator first, Size n, const T& x); template <class T> void destroy_at(T* location); template <class ForwardIterator> void destroy(ForwardIterator first, ForwardIterator last); template <class ExecutionPolicy, class ForwardIterator> void destroy(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator first, ForwardIterator last); template <class ForwardIterator, class Size> ForwardIterator destroy_n(ForwardIterator first, Size n); template <class ExecutionPolicy, class ForwardIterator, class Size> ForwardIterator destroy_n(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator first, Size n); // [unique.ptr], class template unique_ptr template <class T> struct default_delete; template <class T> struct default_delete<T[]>; template <class T, class D = default_delete<T>> class unique_ptr; template <class T, class D> class unique_ptr<T[], D>; template <class T, class... Args> unique_ptr<T> make_unique(Args&&... args); template <class T> unique_ptr<T> make_unique(size_t n); template <class T, class... Args> unspecified make_unique(Args&&...) = delete; template <class T, class D> void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y) noexcept; template <class T1, class D1, class T2, class D2> bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator!=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T, class D> bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept; template <class T, class D> bool operator==(nullptr_t, const unique_ptr<T, D>& y) noexcept; template <class T, class D> bool operator!=(const unique_ptr<T, D>& x, nullptr_t) noexcept; template <class T, class D> bool operator!=(nullptr_t, const unique_ptr<T, D>& y) noexcept; template <class T, class D> bool operator<(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator<(nullptr_t, const unique_ptr<T, D>& y); template <class T, class D> bool operator<=(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator<=(nullptr_t, const unique_ptr<T, D>& y); template <class T, class D> bool operator>(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator>(nullptr_t, const unique_ptr<T, D>& y); template <class T, class D> bool operator>=(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator>=(nullptr_t, const unique_ptr<T, D>& y); // [util.smartptr.weak.bad], class bad_weak_ptr class bad_weak_ptr; // [util.smartptr.shared], class template shared_ptr template<class T> class shared_ptr; // [util.smartptr.shared.create], shared_ptr creation template<class T, class... Args> shared_ptr<T> make_shared(Args&&... args); template<class T, class A, class... Args> shared_ptr<T> allocate_shared(const A& a, Args&&... args); // [util.smartptr.shared.cmp], shared_ptr comparisons template<class T, class U> bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator!=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator<(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator>(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator<=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> bool operator>=(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template <class T> bool operator==(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator==(nullptr_t, const shared_ptr<T>& y) noexcept; template <class T> bool operator!=(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator!=(nullptr_t, const shared_ptr<T>& y) noexcept; template <class T> bool operator<(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator<(nullptr_t, const shared_ptr<T>& y) noexcept; template <class T> bool operator<=(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator<=(nullptr_t, const shared_ptr<T>& y) noexcept; template <class T> bool operator>(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator>(nullptr_t, const shared_ptr<T>& y) noexcept; template <class T> bool operator>=(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator>=(nullptr_t, const shared_ptr<T>& y) noexcept; // [util.smartptr.shared.spec], shared_ptr specialized algorithms template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept; // [util.smartptr.shared.cast], shared_ptr casts template<class T, class U> shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r) noexcept; // [util.smartptr.getdeleter], shared_ptr get_deleter template<class D, class T> D* get_deleter(const shared_ptr<T>& p) noexcept; // [util.smartptr.shared.io], shared_ptr I/O template<class E, class T, class Y> basic_ostream<E, T>& operator<< (basic_ostream<E, T>& os, const shared_ptr<Y>& p); // [util.smartptr.weak], class template weak_ptr template<class T> class weak_ptr; // [util.smartptr.weak.spec], weak_ptr specialized algorithms template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept; // [util.smartptr.ownerless], class template owner_less template<class T = void> struct owner_less; // [util.smartptr.enab], class template enable_shared_from_this template<class T> class enable_shared_from_this; // [util.smartptr.shared.atomic], shared_ptr atomic access template<class T> bool atomic_is_lock_free(const shared_ptr<T>* p); template<class T> shared_ptr<T> atomic_load(const shared_ptr<T>* p); template<class T> shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo); template<class T> void atomic_store(shared_ptr<T>* p, shared_ptr<T> r); template<class T> void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo); template<class T> shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r); template<class T> shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo); template<class T> bool atomic_compare_exchange_weak( shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w); template<class T> bool atomic_compare_exchange_strong( shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w); template<class T> bool atomic_compare_exchange_weak_explicit( shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w, memory_order success, memory_order failure); template<class T> bool atomic_compare_exchange_strong_explicit( shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w, memory_order success, memory_order failure); // [util.smartptr.hash], hash support template <class T> struct hash; template <class T, class D> struct hash<unique_ptr<T, D>>; template <class T> struct hash<shared_ptr<T>>; // [allocator.uses.trait], uses_allocator template <class T, class Alloc> inline constexpr bool uses_allocator_v = uses_allocator<T, Alloc>::value; }
The class template pointer_traits supplies a uniform interface to certain attributes of pointer-like types.
namespace std { template <class Ptr> struct pointer_traits { using pointer = Ptr; using element_type = see below; using difference_type = see below; template <class U> using rebind = see below; static pointer pointer_to(see below r); }; template <class T> struct pointer_traits<T*> { using pointer = T*; using element_type = T; using difference_type = ptrdiff_t; template <class U> using rebind = U*; static pointer pointer_to(see below r) noexcept; }; }
using element_type = see below;
Type: Ptr::element_type if the qualified-id Ptr::element_type is valid and denotes a type ([temp.deduct]); otherwise, T if Ptr is a class template instantiation of the form SomePointer<T, Args>, where Args is zero or more type arguments; otherwise, the specialization is ill-formed.
using difference_type = see below;
Type: Ptr::difference_type if the qualified-id Ptr::difference_type is valid and denotes a type ([temp.deduct]); otherwise, ptrdiff_t.
template <class U> using rebind = see below;
Alias template: Ptr::rebind<U> if the qualified-id Ptr::rebind<U> is valid and denotes a type ([temp.deduct]); otherwise, SomePointer<U, Args> if Ptr is a class template instantiation of the form SomePointer<T, Args>, where Args is zero or more type arguments; otherwise, the instantiation of rebind is ill-formed.
static pointer pointer_traits::pointer_to(see below r);
static pointer pointer_traits<T*>::pointer_to(see below r) noexcept;
Remarks: If element_type is cv void, the type of r is unspecified; otherwise, it is element_type&.
Returns: The first member function returns a pointer to r obtained by calling Ptr::pointer_to(r) through which indirection is valid; an instantiation of this function is ill-formed if Ptr does not have a matching pointer_to static member function. The second member function returns addressof(r).
A complete object is declared reachable while the number of calls to declare_reachable with an argument referencing the object exceeds the number of calls to undeclare_reachable with an argument referencing the object.
void declare_reachable(void* p);
Requires: p shall be a safely-derived pointer or a null pointer value.
Effects: If p is not null, the complete object referenced by p is subsequently declared reachable ([basic.stc.dynamic.safety]).
Throws: May throw bad_alloc if the system cannot allocate additional memory that may be required to track objects declared reachable.
template <class T> T* undeclare_reachable(T* p);
Requires: If p is not null, the complete object referenced by p shall have been previously declared reachable, and shall be live ([basic.life]) from the time of the call until the last undeclare_reachable(p) call on the object.
[ Note: It is expected that calls to declare_reachable(p) will consume a small amount of memory in addition to that occupied by the referenced object until the matching call to undeclare_reachable(p) is encountered. Long running programs should arrange that calls are matched. — end note ]
void declare_no_pointers(char* p, size_t n);
Requires: No bytes in the specified range are currently registered with declare_no_pointers(). If the specified range is in an allocated object, then it must be entirely within a single allocated object. The object must be live until the corresponding undeclare_no_pointers() call. [ Note: In a garbage-collecting implementation, the fact that a region in an object is registered with declare_no_pointers() should not prevent the object from being collected. — end note ]
Effects: The n bytes starting at p no longer contain traceable pointer locations, independent of their type. Hence indirection through a pointer located there is undefined if the object it points to was created by global operator new and not previously declared reachable. [ Note: This may be used to inform a garbage collector or leak detector that this region of memory need not be traced. — end note ]
[ Note: Under some conditions implementations may need to allocate memory. However, the request can be ignored if memory allocation fails. — end note ]
void undeclare_no_pointers(char* p, size_t n);
Effects: Unregisters a range registered with declare_no_pointers() for destruction. It must be called before the lifetime of the object ends.
pointer_safety get_pointer_safety() noexcept;
Returns: pointer_safety::strict if the implementation has strict pointer safety. It is implementation-defined whether get_pointer_safety returns pointer_safety::relaxed or pointer_safety::preferred if the implementation has relaxed pointer safety.221
pointer_safety::preferred might be returned to indicate that a leak detector is running so that the program can avoid spurious leak reports.
void* align(size_t alignment, size_t size, void*& ptr, size_t& space);
Effects: If it is possible to fit size bytes of storage aligned by alignment into the buffer pointed to by ptr with length space, the function updates ptr to represent the first possible address of such storage and decreases space by the number of bytes used for alignment. Otherwise, the function does nothing.
Returns: A null pointer if the requested aligned buffer would not fit into the available space, otherwise the adjusted value of ptr.
namespace std {
struct allocator_arg_t { explicit allocator_arg_t() = default; };
inline constexpr allocator_arg_t allocator_arg{};
}
The allocator_arg_t struct is an empty structure type used as a unique type to disambiguate constructor and function overloading. Specifically, several types (see tuple [tuple]) have constructors with allocator_arg_t as the first argument, immediately followed by an argument of a type that satisfies the Allocator requirements.
template <class T, class Alloc> struct uses_allocator;
Remarks: Automatically detects whether T has a nested allocator_type that is convertible from Alloc. Meets the BinaryTypeTrait requirements. The implementation shall provide a definition that is derived from true_type if the qualified-id T::allocator_type is valid and denotes a type ([temp.deduct]) and is_convertible_v<Alloc, T::allocator_type> != false, otherwise it shall be derived from false_type. A program may specialize this template to derive from true_type for a user-defined type T that does not have a nested allocator_type but nonetheless can be constructed with an allocator where either:
the first argument of a constructor has type allocator_arg_t and the second argument has type Alloc or
the last argument of a constructor has type Alloc.
Uses-allocator construction with allocator Alloc refers to the construction of an object obj of type T, using constructor arguments v1, v2, ..., vN of types V1, V2, ..., VN, respectively, and an allocator alloc of type Alloc, according to the following rules:
if uses_allocator_v<T, Alloc> is false and is_constructible_v<T, V1, V2, ..., VN> is true, then obj is initialized as obj(v1, v2, ..., vN);
otherwise, if uses_allocator_v<T, Alloc> is true and is_constructible_v<T, allocator_arg_t, Alloc, V1, V2, ..., VN> is true, then obj is initialized as obj(allocator_arg, alloc, v1, v2, ..., vN);
otherwise, if uses_allocator_v<T, Alloc> is true and is_constructible_v<T, V1, V2, ..., VN, Alloc> is true, then obj is initialized as obj(v1, v2, ..., vN, alloc);
otherwise, the request for uses-allocator construction is ill-formed. [ Note: An error will result if uses_allocator_v<T, Alloc> is true but the specific constructor does not take an allocator. This definition prevents a silent failure to pass the allocator to an element. — end note ]
The class template allocator_traits supplies a uniform interface to all allocator types. An allocator cannot be a non-class type, however, even if allocator_traits supplies the entire required interface. [ Note: Thus, it is always possible to create a derived class from an allocator. — end note ]
namespace std { template <class Alloc> struct allocator_traits { using allocator_type = Alloc; using value_type = typename Alloc::value_type; using pointer = see below; using const_pointer = see below; using void_pointer = see below; using const_void_pointer = see below; using difference_type = see below; using size_type = see below; using propagate_on_container_copy_assignment = see below; using propagate_on_container_move_assignment = see below; using propagate_on_container_swap = see below; using is_always_equal = see below; template <class T> using rebind_alloc = see below; template <class T> using rebind_traits = allocator_traits<rebind_alloc<T>>; static pointer allocate(Alloc& a, size_type n); static pointer allocate(Alloc& a, size_type n, const_void_pointer hint); static void deallocate(Alloc& a, pointer p, size_type n); template <class T, class... Args> static void construct(Alloc& a, T* p, Args&&... args); template <class T> static void destroy(Alloc& a, T* p); static size_type max_size(const Alloc& a) noexcept; static Alloc select_on_container_copy_construction(const Alloc& rhs); }; }
using pointer = see below;
Type: Alloc::pointer if the qualified-id Alloc::pointer is valid and denotes a type ([temp.deduct]); otherwise, value_type*.
using const_pointer = see below;
Type: Alloc::const_pointer if the qualified-id Alloc::const_pointer is valid and denotes a type ([temp.deduct]); otherwise, pointer_traits<pointer>::rebind<const value_type>.
using void_pointer = see below;
Type: Alloc::void_pointer if the qualified-id Alloc::void_pointer is valid and denotes a type ([temp.deduct]); otherwise, pointer_traits<pointer>::rebind<void>.
using const_void_pointer = see below;
Type: Alloc::const_void_pointer if the qualified-id Alloc::const_void_pointer is valid and denotes a type ([temp.deduct]); otherwise, pointer_traits<pointer>::rebind<const void>.
using difference_type = see below;
Type: Alloc::difference_type if the qualified-id Alloc::difference_type is valid and denotes a type ([temp.deduct]); otherwise, pointer_traits<pointer>::difference_type.
using size_type = see below;
Type: Alloc::size_type if the qualified-id Alloc::size_type is valid and denotes a type ([temp.deduct]); otherwise, make_unsigned_t<difference_type>.
using propagate_on_container_copy_assignment = see below;
Type: Alloc::propagate_on_container_copy_assignment if the qualified-id Alloc::propagate_on_container_copy_assignment is valid and denotes a type ([temp.deduct]); otherwise false_type.
using propagate_on_container_move_assignment = see below;
Type: Alloc::propagate_on_container_move_assignment if the qualified-id Alloc::propagate_on_container_move_assignment is valid and denotes a type ([temp.deduct]); otherwise false_type.
using propagate_on_container_swap = see below;
Type: Alloc::propagate_on_container_swap if the qualified-id Alloc::propagate_on_container_swap is valid and denotes a type ([temp.deduct]); otherwise false_type.
using is_always_equal = see below;
Type: Alloc::is_always_equal if the qualified-id Alloc::is_always_equal is valid and denotes a type ([temp.deduct]); otherwise is_empty<Alloc>::type.
template <class T> using rebind_alloc = see below;
Alias template: Alloc::rebind<T>::other if the qualified-id Alloc::rebind<T>::other is valid and denotes a type ([temp.deduct]); otherwise, Alloc<T, Args> if Alloc is a class template instantiation of the form Alloc<U, Args>, where Args is zero or more type arguments; otherwise, the instantiation of rebind_alloc is ill-formed.
static pointer allocate(Alloc& a, size_type n);
static pointer allocate(Alloc& a, size_type n, const_void_pointer hint);
static void deallocate(Alloc& a, pointer p, size_type n);
template <class T, class... Args>
static void construct(Alloc& a, T* p, Args&&... args);
Effects: Calls a.construct(p, std::forward<Args>(args)...) if that call is well-formed; otherwise, invokes ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...).
template <class T>
static void destroy(Alloc& a, T* p);
static size_type max_size(const Alloc& a) noexcept;
Returns: a.max_size() if that expression is well-formed; otherwise, numeric_limits<size_type>::max()/sizeof(value_type).
static Alloc select_on_container_copy_construction(const Alloc& rhs);
All specializations of the default allocator satisfy the allocator completeness requirements ([allocator.requirements.completeness]).
namespace std { template <class T> class allocator { public: using value_type = T; using propagate_on_container_move_assignment = true_type; using is_always_equal = true_type; allocator() noexcept; allocator(const allocator&) noexcept; template <class U> allocator(const allocator<U>&) noexcept; ~allocator(); T* allocate(size_t n); void deallocate(T* p, size_t n); }; }
Except for the destructor, member functions of the default allocator shall not introduce data races as a result of concurrent calls to those member functions from different threads. Calls to these functions that allocate or deallocate a particular unit of storage shall occur in a single total order, and each such deallocation call shall happen before the next allocation (if any) in this order.
T* allocate(size_t n);
Returns: A pointer to the initial element of an array of storage of size n * sizeof(T), aligned appropriately for objects of type T.
Remarks: the storage is obtained by calling ::operator new, but it is unspecified when or how often this function is called.
void deallocate(T* p, size_t n);
Requires: p shall be a pointer value obtained from allocate(). n shall equal the value passed as the first argument to the invocation of allocate which returned p.
Remarks: Uses ::operator delete, but it is unspecified when this function is called.
Throughout this subclause, the names of template parameters are used to express type requirements.
If an algorithm's template parameter is named InputIterator, the template argument shall satisfy the requirements of an input iterator.
If an algorithm's template parameter is named ForwardIterator, the template argument shall satisfy the requirements of a forward iterator, and is required to have the property that no exceptions are thrown from increment, assignment, comparison, or indirection through valid iterators.
Unless otherwise specified, if an exception is thrown in the following algorithms there are no effects.
template <class T> constexpr T* addressof(T& r) noexcept;
Returns: The actual address of the object or function referenced by r, even in the presence of an overloaded operator&.
Remarks: An expression addressof(E) is a constant subexpression if E is an lvalue constant subexpression.
template <class ForwardIterator>
void uninitialized_default_construct(ForwardIterator first, ForwardIterator last);
Effects: Equivalent to:
for (; first != last; ++first) ::new (static_cast<void*>(addressof(*first))) typename iterator_traits<ForwardIterator>::value_type;
template <class ForwardIterator, class Size>
ForwardIterator uninitialized_default_construct_n(ForwardIterator first, Size n);
template <class ForwardIterator>
void uninitialized_value_construct(ForwardIterator first, ForwardIterator last);
Effects: Equivalent to:
for (; first != last; ++first) ::new (static_cast<void*>(addressof(*first))) typename iterator_traits<ForwardIterator>::value_type();
template <class ForwardIterator, class Size>
ForwardIterator uninitialized_value_construct_n(ForwardIterator first, Size n);
template <class InputIterator, class ForwardIterator>
ForwardIterator uninitialized_copy(InputIterator first, InputIterator last,
ForwardIterator result);
Effects: As if by:
for (; first != last; ++result, (void) ++first) ::new (static_cast<void*>(addressof(*result))) typename iterator_traits<ForwardIterator>::value_type(*first);
template <class InputIterator, class Size, class ForwardIterator>
ForwardIterator uninitialized_copy_n(InputIterator first, Size n,
ForwardIterator result);
Effects: As if by:
for ( ; n > 0; ++result, (void) ++first, --n) { ::new (static_cast<void*>(addressof(*result))) typename iterator_traits<ForwardIterator>::value_type(*first); }
template <class InputIterator, class ForwardIterator>
ForwardIterator uninitialized_move(InputIterator first, InputIterator last,
ForwardIterator result);
Effects: Equivalent to:
for (; first != last; (void)++result, ++first) ::new (static_cast<void*>(addressof(*result))) typename iterator_traits<ForwardIterator>::value_type(std::move(*first)); return result;
Remarks: If an exception is thrown, some objects in the range [first, last) are left in a valid but unspecified state.
template <class InputIterator, class Size, class ForwardIterator>
pair<InputIterator, ForwardIterator>
uninitialized_move_n(InputIterator first, Size n, ForwardIterator result);
Effects: Equivalent to:
for (; n > 0; ++result, (void) ++first, --n) ::new (static_cast<void*>(addressof(*result))) typename iterator_traits<ForwardIterator>::value_type(std::move(*first)); return {first,result};
template <class ForwardIterator, class T>
void uninitialized_fill(ForwardIterator first, ForwardIterator last,
const T& x);
Effects: As if by:
for (; first != last; ++first) ::new (static_cast<void*>(addressof(*first))) typename iterator_traits<ForwardIterator>::value_type(x);
template <class ForwardIterator, class Size, class T>
ForwardIterator uninitialized_fill_n(ForwardIterator first, Size n, const T& x);
template <class T>
void destroy_at(T* location);
template <class ForwardIterator>
void destroy(ForwardIterator first, ForwardIterator last);
template <class ForwardIterator, class Size>
ForwardIterator destroy_n(ForwardIterator first, Size n);
void* aligned_alloc(size_t alignment, size_t size);
void* calloc(size_t nmemb, size_t size);
void* malloc(size_t size);
void* realloc(void* ptr, size_t size);
Remarks: These functions do not attempt to allocate storage by calling ::operator new() ([support.dynamic]).
Storage allocated directly with these functions is implicitly declared reachable (see [basic.stc.dynamic.safety]) on allocation, ceases to be declared reachable on deallocation, and need not cease to be declared reachable as the result of an undeclare_reachable() call. [ Note: This allows existing C libraries to remain unaffected by restrictions on pointers that are not safely derived, at the expense of providing far fewer garbage collection and leak detection options for malloc()-allocated objects. It also allows malloc() to be implemented with a separate allocation arena, bypassing the normal declare_reachable() implementation. The above functions should never intentionally be used as a replacement for declare_reachable(), and newly written code is strongly encouraged to treat memory allocated with these functions as though it were allocated with operator new. — end note ]
void free(void* ptr);
See also: ISO C 7.22.3.