26 Containers library [containers]

26.3 Sequence containers [sequences]

26.3.10 Class template list [list]

26.3.10.1 Class template list overview [list.overview]

A list is a sequence container that supports bidirectional iterators and allows constant time insert and erase operations anywhere within the sequence, with storage management handled automatically. Unlike vectors and deques, fast random access to list elements is not supported, but many algorithms only need sequential access anyway.

A list satisfies all of the requirements of a container, of a reversible container (given in two tables in [container.requirements]), of a sequence container, including most of the optional sequence container requirements, and of an allocator-aware container. The exceptions are the operator[] and at member functions, which are not provided.258 Descriptions are provided here only for operations on list that are not described in one of these tables or for operations where there is additional semantic information.

namespace std {
  template <class T, class Allocator = allocator<T>>
  class list {
  public:
    // types:
    using value_type             = T;
    using allocator_type         = Allocator;
    using pointer                = typename allocator_traits<Allocator>::pointer;
    using const_pointer          = typename allocator_traits<Allocator>::const_pointer;
    using reference              = value_type&;
    using const_reference        = const value_type&;
    using size_type              = implementation-defined; // see [container.requirements]
    using difference_type        = implementation-defined; // see [container.requirements]
    using iterator               = implementation-defined; // see [container.requirements]
    using const_iterator         = implementation-defined; // see [container.requirements]
    using reverse_iterator       = std::reverse_iterator<iterator>;
    using const_reverse_iterator = std::reverse_iterator<const_iterator>;

    // [list.cons], construct/copy/destroy
    list() : list(Allocator()) { }
    explicit list(const Allocator&);
    explicit list(size_type n, const Allocator& = Allocator());
    list(size_type n, const T& value, const Allocator& = Allocator());
    template <class InputIterator>
      list(InputIterator first, InputIterator last, const Allocator& = Allocator());
    list(const list& x);
    list(list&& x);
    list(const list&, const Allocator&);
    list(list&&, const Allocator&);
    list(initializer_list<T>, const Allocator& = Allocator());
    ~list();
    list& operator=(const list& x);
    list& operator=(list&& x)
      noexcept(allocator_traits<Allocator>::is_always_equal::value);
    list& operator=(initializer_list<T>);
    template <class InputIterator>
      void assign(InputIterator first, InputIterator last);
    void assign(size_type n, const T& t);
    void assign(initializer_list<T>);
    allocator_type get_allocator() const noexcept;

    // iterators:
    iterator               begin() noexcept;
    const_iterator         begin() const noexcept;
    iterator               end() noexcept;
    const_iterator         end() const noexcept;
    reverse_iterator       rbegin() noexcept;
    const_reverse_iterator rbegin() const noexcept;
    reverse_iterator       rend() noexcept;
    const_reverse_iterator rend() const noexcept;

    const_iterator         cbegin() const noexcept;
    const_iterator         cend() const noexcept;
    const_reverse_iterator crbegin() const noexcept;
    const_reverse_iterator crend() const noexcept;

    // [list.capacity], capacity
    bool      empty() const noexcept;
    size_type size() const noexcept;
    size_type max_size() const noexcept;
    void      resize(size_type sz);
    void      resize(size_type sz, const T& c);

    // element access:
    reference       front();
    const_reference front() const;
    reference       back();
    const_reference back() const;

    // [list.modifiers], modifiers
    template <class... Args> reference emplace_front(Args&&... args);
    template <class... Args> reference emplace_back(Args&&... args);
    void push_front(const T& x);
    void push_front(T&& x);
    void pop_front();
    void push_back(const T& x);
    void push_back(T&& x);
    void pop_back();

    template <class... Args> iterator emplace(const_iterator position, Args&&... args);
    iterator insert(const_iterator position, const T& x);
    iterator insert(const_iterator position, T&& x);
    iterator insert(const_iterator position, size_type n, const T& x);
    template <class InputIterator>
      iterator insert(const_iterator position, InputIterator first,
                      InputIterator last);
    iterator insert(const_iterator position, initializer_list<T> il);

    iterator erase(const_iterator position);
    iterator erase(const_iterator position, const_iterator last);
    void     swap(list&)
      noexcept(allocator_traits<Allocator>::is_always_equal::value);
    void     clear() noexcept;

    // [list.ops], list operations
    void splice(const_iterator position, list& x);
    void splice(const_iterator position, list&& x);
    void splice(const_iterator position, list& x, const_iterator i);
    void splice(const_iterator position, list&& x, const_iterator i);
    void splice(const_iterator position, list& x,
                const_iterator first, const_iterator last);
    void splice(const_iterator position, list&& x,
                const_iterator first, const_iterator last);

    void remove(const T& value);
    template <class Predicate> void remove_if(Predicate pred);

    void unique();
    template <class BinaryPredicate>
      void unique(BinaryPredicate binary_pred);

    void merge(list& x);
    void merge(list&& x);
    template <class Compare> void merge(list& x, Compare comp);
    template <class Compare> void merge(list&& x, Compare comp);

    void sort();
    template <class Compare> void sort(Compare comp);

    void reverse() noexcept;
  };

  template<class InputIterator,
           class Allocator = allocator<typename iterator_traits<InputIterator>::value_type>>
    list(InputIterator, InputIterator, Allocator = Allocator())
      -> list<typename iterator_traits<InputIterator>::value_type, Allocator>;

  template <class T, class Allocator>
    bool operator==(const list<T, Allocator>& x, const list<T, Allocator>& y);
  template <class T, class Allocator>
    bool operator< (const list<T, Allocator>& x, const list<T, Allocator>& y);
  template <class T, class Allocator>
    bool operator!=(const list<T, Allocator>& x, const list<T, Allocator>& y);
  template <class T, class Allocator>
    bool operator> (const list<T, Allocator>& x, const list<T, Allocator>& y);
  template <class T, class Allocator>
    bool operator>=(const list<T, Allocator>& x, const list<T, Allocator>& y);
  template <class T, class Allocator>
    bool operator<=(const list<T, Allocator>& x, const list<T, Allocator>& y);

  // [list.special], specialized algorithms
  template <class T, class Allocator>
    void swap(list<T, Allocator>& x, list<T, Allocator>& y)
      noexcept(noexcept(x.swap(y)));
}

An incomplete type T may be used when instantiating list if the allocator satisfies the allocator completeness requirements. T shall be complete before any member of the resulting specialization of list is referenced.

These member functions are only provided by containers whose iterators are random access iterators.