A bernoulli_distribution random number distribution
produces bool values b
distributed according to
the discrete probability function
![\[%
P(b\,|\,p)
= \left\{ \begin{array}{lcl}
p & \mbox{if} & b = \texttt{true} \\
1-p & \mbox{if} & b = \texttt{false}
\end{array}\right.
\; \mbox{.}
\]](math/5980848140442699116.png)
class bernoulli_distribution{
public:
// types
typedef bool result_type;
typedef unspecified param_type;
// constructors and reset functions
explicit bernoulli_distribution(double p = 0.5);
explicit bernoulli_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};
Requires: 0 ≤ p ≤ 1.
Effects: Constructs a bernoulli_distribution object; p corresponds to the parameter of the distribution.
Returns: The value of the p parameter with which the object was constructed.
A binomial_distribution random number distribution
produces integer values i ≥ 0
distributed according to
the discrete probability function
![\[%
P(i\,|\,t,p)
= \binom{t}{i} \cdot p^i \cdot (1-p)^{t-i}
\; \mbox{.}
\]](math/1013655488086605659.png)
template<class IntType = int>
class binomial_distribution{
public:
// types
typedef IntType result_type;
typedef unspecified param_type;
// constructors and reset functions
explicit binomial_distribution(IntType t = 1, double p = 0.5);
explicit binomial_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
IntType t() const;
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};
explicit binomial_distribution(IntType t = 1, double p = 0.5);
Requires: 0 ≤ p ≤ 1 and 0 ≤ t .
Effects: Constructs a binomial_distribution object; t and p correspond to the respective parameters of the distribution.
Returns: The value of the t parameter with which the object was constructed.
Returns: The value of the p parameter with which the object was constructed.
A geometric_distribution random number distribution produces integer values i ≥ 0 distributed according to the discrete probability function P(i | p) = p · (1-p)i .
template<class IntType = int>
class geometric_distribution{
public:
// types
typedef IntType result_type;
typedef unspecified param_type;
// constructors and reset functions
explicit geometric_distribution(double p = 0.5);
explicit geometric_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};
Requires: 0 < p < 1.
Effects: Constructs a geometric_distribution object; p corresponds to the parameter of the distribution.
Returns: The value of the p parameter with which the object was constructed.
A negative_binomial_distribution random number distribution
produces random integers i ≥ 0
distributed according to
the discrete probability function
![\[%
P(i\,|\,k,p)
= \binom{k+i-1}{i} \cdot p^k \cdot (1-p)^i
\; \mbox{.}
\]](math/7350092705052863326.png)
template<class IntType = int>
class negative_binomial_distribution{
public:
// types
typedef IntType result_type;
typedef unspecified param_type;
// constructor and reset functions
explicit negative_binomial_distribution(IntType k = 1, double p = 0.5);
explicit negative_binomial_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
IntType k() const;
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};
explicit negative_binomial_distribution(IntType k = 1, double p = 0.5);
Requires: 0 < p ≤ 1 and 0 < k .
Effects: Constructs a negative_binomial_distribution object; k and p correspond to the respective parameters of the distribution.
Returns: The value of the k parameter with which the object was constructed.
Returns: The value of the p parameter with which the object was constructed.