Type conversions of class objects can be specified by constructors and by conversion functions. These conversions are called user-defined conversions and are used for implicit type conversions (Clause [conv]), for initialization ([dcl.init]), and for explicit type conversions ([expr.cast], [expr.static.cast]).
User-defined conversions are applied only where they are unambiguous ([class.member.lookup], [class.conv.fct]). Conversions obey the access control rules (Clause [class.access]). Access control is applied after ambiguity resolution ([basic.lookup]).
[ Note: See [over.match] for a discussion of the use of conversions in function calls as well as examples below. — end note ]
At most one user-defined conversion (constructor or conversion function) is implicitly applied to a single value.
[ Example:
struct X { operator int(); }; struct Y { operator X(); }; Y a; int b = a; // error // a.operator X().operator int() not tried int c = X(a); // OK: a.operator X().operator int()
— end example ]
User-defined conversions are used implicitly only if they are unambiguous. A conversion function in a derived class does not hide a conversion function in a base class unless the two functions convert to the same type. Function overload resolution ([over.match.best]) selects the best conversion function to perform the conversion. [ Example:
struct X { operator int(); }; struct Y : X { operator char(); }; void f(Y& a) { if (a) { // ill-formed: // X::operator int() or Y::operator char() } }
— end example ]
A constructor declared without the function-specifier explicit specifies a conversion from the types of its parameters to the type of its class. Such a constructor is called a converting constructor. [ Example:
struct X { X(int); X(const char*, int =0); X(int, int); }; void f(X arg) { X a = 1; // a = X(1) X b = "Jessie"; // b = X("Jessie",0) a = 2; // a = X(2) f(3); // f(X(3)) f({1, 2}); // f(X(1,2)) }
— end example ]
An explicit constructor constructs objects just like non-explicit constructors, but does so only where the direct-initialization syntax ([dcl.init]) or where casts ([expr.static.cast], [expr.cast]) are explicitly used. A default constructor may be an explicit constructor; such a constructor will be used to perform default-initialization or value-initialization ([dcl.init]). [ Example:
struct Z { explicit Z(); explicit Z(int); explicit Z(int, int); }; Z a; // OK: default-initialization performed Z a1 = 1; // error: no implicit conversion Z a3 = Z(1); // OK: direct initialization syntax used Z a2(1); // OK: direct initialization syntax used Z* p = new Z(1); // OK: direct initialization syntax used Z a4 = (Z)1; // OK: explicit cast used Z a5 = static_cast<Z>(1); // OK: explicit cast used Z a6 = { 3, 4 }; // error: no implicit conversion
— end example ]
A non-explicit copy/move constructor ([class.copy]) is a converting constructor. An implicitly-declared copy/move constructor is not an explicit constructor; it may be called for implicit type conversions.
A member function of a class X having no parameters with a name of the form
conversion-function-id: operator conversion-type-id
conversion-type-id: type-specifier-seq conversion-declaratoropt
conversion-declarator: ptr-operator conversion-declaratoropt
specifies a conversion from X to the type specified by the conversion-type-id. Such functions are called conversion functions. No return type can be specified. If a conversion function is a member function, the type of the conversion function ([dcl.fct]) is “function taking no parameter returning conversion-type-id”. A conversion function is never used to convert a (possibly cv-qualified) object to the (possibly cv-qualified) same object type (or a reference to it), to a (possibly cv-qualified) base class of that type (or a reference to it), or to (possibly cv-qualified) void.118
[ Example:
struct X { operator int(); }; void f(X a) { int i = int(a); i = (int)a; i = a; }
In all three cases the value assigned will be converted by X::operator int(). — end example ]
A conversion function may be explicit ([dcl.fct.spec]), in which case it is only considered as a user-defined conversion for direct-initialization ([dcl.init]). Otherwise, user-defined conversions are not restricted to use in assignments and initializations. [ Example:
class Y { }; struct Z { explicit operator Y() const; }; void h(Z z) { Y y1(z); // OK: direct-initialization Y y2 = z; // ill-formed: copy-initialization Y y3 = (Y)z; // OK: cast notation } void g(X a, X b) { int i = (a) ? 1+a : 0; int j = (a&&b) ? a+b : i; if (a) { } }
— end example ]
The conversion-type-id shall not represent a function type nor an array type. The conversion-type-id in a conversion-function-id is the longest possible sequence of conversion-declarators. [ Note: This prevents ambiguities between the declarator operator * and its expression counterparts. [ Example:
&ac.operator int*i; // syntax error: // parsed as: &(ac.operator int *)i // not as: &(ac.operator int)*i
The * is the pointer declarator and not the multiplication operator. — end example ] — end note ]
These conversions are considered as standard conversions for the purposes of overload resolution ([over.best.ics], [over.ics.ref]) and therefore initialization ([dcl.init]) and explicit casts ([expr.static.cast]). A conversion to void does not invoke any conversion function ([expr.static.cast]). Even though never directly called to perform a conversion, such conversion functions can be declared and can potentially be reached through a call to a virtual conversion function in a base class.