A subtract_with_carry_engine random number engine produces unsigned integer random numbers.
The state xi of a subtract_with_carry_engine object x is of size Ο(r), and consists of a sequence X of r integer values 0 ≤ Xi < m = 2w; all subscripts applied to X are to be taken modulo r. The state xi additionally consists of an integer c (known as the carry) whose value is either 0 or 1.
The state transition is performed as follows:
Let Y = Xi-s - Xi-r - c .
Set Xi to y = Y mod m . Set c to 1 if Y < 0, otherwise set c to 0.
[ Note: This algorithm corresponds to a modular linear function of the form TA(xi) = (a · xi) mod b , where b is of the form mr - ms + 1 and a = b - (b-1) / m . — end note ]
The generation algorithm is given by GA(xi) = y , where y is the value produced as a result of advancing the engine's state as described above.
template<class UIntType, size_t w, size_t s, size_t r> class subtract_with_carry_engine{ public: // types typedef UIntType result_type; // engine characteristics static constexpr size_t word_size = w; static constexpr size_t short_lag = s; static constexpr size_t long_lag = r; static constexpr result_type min() { return 0; } static constexpr result_type max() { return m - 1; } static constexpr result_type default_seed = 19780503u; // constructors and seeding functions explicit subtract_with_carry_engine(result_type value = default_seed); template<class Sseq> explicit subtract_with_carry_engine(Sseq& q); void seed(result_type value = default_seed); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); };
The following relations shall hold: 0u < s, s < r, 0 < w, and w <= numeric_limits<UIntType>::digits.
The textual representation consists of the values of Xi-r, …, Xi-1, in that order, followed by c.
explicit subtract_with_carry_engine(result_type value = default_seed);
Effects: Constructs a subtract_with_carry_engine object. Sets the values of X-r, …, X-1 , in that order, as specified below. If X-1 is then 0, sets c to 1; otherwise sets c to 0.
To set the values Xk, first construct e, a linear_congruential_engine object, as if by the following definition:
linear_congruential_engine<result_type, 40014u,0u,2147483563u> e(value == 0u ? default_seed : value);
Then, to set each Xk, obtain new values z0, …, zn-1 from n = ⌈ w/32 ⌉ successive invocations of e taken modulo 232. Set Xk to .
Complexity: Exactly n · r invocations of e.
template<class Sseq> explicit subtract_with_carry_engine(Sseq& q);
Effects: Constructs a subtract_with_carry_engine object. With k = ⌈ w / 32 ⌉ and a an array (or equivalent) of length r · k , invokes q.generate(a+0, a+r · k) and then, iteratively for i = -r, …, -1, sets Xi to . If X-1 is then 0, sets c to 1; otherwise sets c to 0.