A discard_block_engine random number engine adaptor produces random numbers selected from those produced by some base engine e. The state xi of a discard_block_engine engine adaptor object x consists of the state ei of its base engine e and an additional integer n. The size of the state is the size of e's state plus 1.
The transition algorithm discards all but r > 0 values from each block of p ≥ r values delivered by e. The state transition is performed as follows: If n ≥ r, advance the state of e from ei to ei+p-r and set n to 0. In any case, then increment n and advance e's then-current state ej to ej+1.
The generation algorithm yields the value returned by the last invocation of e() while advancing e's state as described above.
template<class Engine, size_t p, size_t r> class discard_block_engine{ public: // types typedef typename Engine::result_type result_type; // engine characteristics static constexpr size_t block_size = p; static constexpr size_t used_block = r; static constexpr result_type min() { return Engine::min(); } static constexpr result_type max() { return Engine::max(); } // constructors and seeding functions discard_block_engine(); explicit discard_block_engine(const Engine& e); explicit discard_block_engine(Engine&& e); explicit discard_block_engine(result_type s); template<class Sseq> explicit discard_block_engine(Sseq& q); void seed(); void seed(result_type s); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); // property functions const Engine& base() const noexcept { return e; }; private: Engine e; // exposition only int n; // exposition only };
The following relations shall hold: 0 < r and r <= p.
In addition to its behavior pursuant to section [rand.req.adapt], each constructor that is not a copy constructor sets n to 0.