24 Iterators library [iterators]

24.4 Iterator primitives [iterator.primitives]

To simplify the task of defining iterators, the library provides several classes and functions:

24.4.1 Iterator traits [iterator.traits]

To implement algorithms only in terms of iterators, it is often necessary to determine the value and difference types that correspond to a particular iterator type. Accordingly, it is required that if Iterator is the type of an iterator, the types

iterator_traits<Iterator>::difference_type
iterator_traits<Iterator>::value_type
iterator_traits<Iterator>::iterator_category

be defined as the iterator's difference type, value type and iterator category, respectively. In addition, the types

iterator_traits<Iterator>::reference
iterator_traits<Iterator>::pointer

shall be defined as the iterator's reference and pointer types, that is, for an iterator object a, the same type as the type of *a and a->, respectively. In the case of an output iterator, the types

iterator_traits<Iterator>::difference_type
iterator_traits<Iterator>::value_type
iterator_traits<Iterator>::reference
iterator_traits<Iterator>::pointer

may be defined as void.

The template iterator_traits<Iterator> is defined as

namespace std {
  template<class Iterator> struct iterator_traits {
    typedef typename Iterator::difference_type difference_type;
    typedef typename Iterator::value_type value_type;
    typedef typename Iterator::pointer pointer;
    typedef typename Iterator::reference reference;
    typedef typename Iterator::iterator_category iterator_category;
  };
}

It is specialized for pointers as

namespace std {
  template<class T> struct iterator_traits<T*> {
    typedef ptrdiff_t difference_type;
    typedef T value_type;
    typedef T* pointer;
    typedef T& reference;
    typedef random_access_iterator_tag iterator_category;
  };
}

and for pointers to const as

namespace std {
  template<class T> struct iterator_traits<const T*> {
    typedef ptrdiff_t difference_type;
    typedef T value_type;
    typedef const T* pointer;
    typedef const T& reference;
    typedef random_access_iterator_tag iterator_category;
  };
}

Note: If there is an additional pointer type  __far such that the difference of two  __far is of type long, an implementation may define

  template<class T> struct iterator_traits<T __far*> {
    typedef long difference_type;
    typedef T value_type;
    typedef T __far* pointer;
    typedef T __far& reference;
    typedef random_access_iterator_tag iterator_category;
  };

 — end note ]

Example: To implement a generic reverse function, a C++ program can do the following:

template <class BidirectionalIterator>
void reverse(BidirectionalIterator first, BidirectionalIterator last) {
  typename iterator_traits<BidirectionalIterator>::difference_type n =
    distance(first, last);
  --n;
  while(n > 0) {
    typename iterator_traits<BidirectionalIterator>::value_type
     tmp = *first;
    *first++ = *--last;
    *last = tmp;
    n -= 2;
  }
}

 — end example ]

24.4.2 Basic iterator [iterator.basic]

The iterator template may be used as a base class to ease the definition of required types for new iterators.

namespace std {
  template<class Category, class T, class Distance = ptrdiff_t,
    class Pointer = T*, class Reference = T&>
  struct iterator {
    typedef T         value_type;
    typedef Distance  difference_type;
    typedef Pointer   pointer;
    typedef Reference reference;
    typedef Category  iterator_category;
  };
}

24.4.3 Standard iterator tags [std.iterator.tags]

It is often desirable for a function template specialization to find out what is the most specific category of its iterator argument, so that the function can select the most efficient algorithm at compile time. To facilitate this, the library introduces category tag classes which are used as compile time tags for algorithm selection. They are: input_iterator_tag, output_iterator_tag, forward_iterator_tag, bidirectional_iterator_tag and random_access_iterator_tag. For every iterator of type Iterator, iterator_traits<Iterator>::iterator_category shall be defined to be the most specific category tag that describes the iterator's behavior.

namespace std {
  struct input_iterator_tag { };
  struct output_iterator_tag { };
  struct forward_iterator_tag: public input_iterator_tag { };
  struct bidirectional_iterator_tag: public forward_iterator_tag { };
  struct random_access_iterator_tag: public bidirectional_iterator_tag { };
}

Example: For a program-defined iterator BinaryTreeIterator, it could be included into the bidirectional iterator category by specializing the iterator_traits template:

template<class T> struct iterator_traits<BinaryTreeIterator<T> > {
  typedef std::ptrdiff_t difference_type;
  typedef T value_type;
  typedef T* pointer;
  typedef T& reference;
  typedef bidirectional_iterator_tag iterator_category;
};

Typically, however, it would be easier to derive BinaryTreeIterator<T> from iterator<bidirectional_iterator_tag,T,ptrdiff_t,T*,T&>.  — end example ]

Example: If evolve() is well defined for bidirectional iterators, but can be implemented more efficiently for random access iterators, then the implementation is as follows:

template <class BidirectionalIterator>
inline void
evolve(BidirectionalIterator first, BidirectionalIterator last) {
  evolve(first, last,
    typename iterator_traits<BidirectionalIterator>::iterator_category());
}

template <class BidirectionalIterator>
void evolve(BidirectionalIterator first, BidirectionalIterator last,
  bidirectional_iterator_tag) {
  // more generic, but less efficient algorithm
}

template <class RandomAccessIterator>
void evolve(RandomAccessIterator first, RandomAccessIterator last,
  random_access_iterator_tag) {
  // more efficient, but less generic algorithm
}

 — end example ]

Example: If a C++ program wants to define a bidirectional iterator for some data structure containing double and such that it works on a large memory model of the implementation, it can do so with:

class MyIterator :
  public iterator<bidirectional_iterator_tag, double, long, T*, T&> {
  // code implementing ++, etc.
};

Then there is no need to specialize the iterator_traits template.  — end example ]

24.4.4 Iterator operations [iterator.operations]

Since only random access iterators provide + and - operators, the library provides two function templates advance and distance. These function templates use + and - for random access iterators (and are, therefore, constant time for them); for input, forward and bidirectional iterators they use ++ to provide linear time implementations.

template <class InputIterator, class Distance> void advance(InputIterator& i, Distance n);

Requires: n shall be negative only for bidirectional and random access iterators.

Effects: Increments (or decrements for negative n) iterator reference i by n.

template<class InputIterator> typename iterator_traits<InputIterator>::difference_type distance(InputIterator first, InputIterator last);

Effects: If InputIterator meets the requirements of random access iterator, returns (last - first); otherwise, returns the number of increments needed to get from first to last.

Requires: If InputIterator meets the requirements of random access iterator, last shall be reachable from first or first shall be reachable from last; otherwise, last shall be reachable from first.

template <class ForwardIterator> ForwardIterator next(ForwardIterator x, typename std::iterator_traits<ForwardIterator>::difference_type n = 1);

Effects: Equivalent to advance(x, n); return x;

template <class BidirectionalIterator> BidirectionalIterator prev(BidirectionalIterator x, typename std::iterator_traits<BidirectionalIterator>::difference_type n = 1);

Effects: Equivalent to advance(x, -n); return x;