24 Containers library [containers]

24.7 Views [views]

24.7.1 General [views.general]

The header <span> defines the view span.
The header <mdspan> defines the class template mdspan and other facilities for interacting with these multidimensional views.

24.7.2 Contiguous access [views.contiguous]

24.7.2.1 Header <span> synopsis [span.syn]

#include <initializer_list> // see [initializer.list.syn] // mostly freestanding namespace std { // constants inline constexpr size_t dynamic_extent = numeric_limits<size_t>::max(); // [views.span], class template span template<class ElementType, size_t Extent = dynamic_extent> class span; // partially freestanding template<class ElementType, size_t Extent> constexpr bool ranges::enable_view<span<ElementType, Extent>> = true; template<class ElementType, size_t Extent> constexpr bool ranges::enable_borrowed_range<span<ElementType, Extent>> = true; // [span.objectrep], views of object representation template<class ElementType, size_t Extent> span<const byte, Extent == dynamic_extent ? dynamic_extent : sizeof(ElementType) * Extent> as_bytes(span<ElementType, Extent> s) noexcept; template<class ElementType, size_t Extent> span<byte, Extent == dynamic_extent ? dynamic_extent : sizeof(ElementType) * Extent> as_writable_bytes(span<ElementType, Extent> s) noexcept; }

24.7.2.2 Class template span [views.span]

24.7.2.2.1 Overview [span.overview]

A span is a view over a contiguous sequence of objects, the storage of which is owned by some other object.
All member functions of span have constant time complexity.
namespace std { template<class ElementType, size_t Extent = dynamic_extent> class span { public: // constants and types using element_type = ElementType; using value_type = remove_cv_t<ElementType>; using size_type = size_t; using difference_type = ptrdiff_t; using pointer = element_type*; using const_pointer = const element_type*; using reference = element_type&; using const_reference = const element_type&; using iterator = implementation-defined; // see [span.iterators] using const_iterator = std::const_iterator<iterator>; using reverse_iterator = std::reverse_iterator<iterator>; using const_reverse_iterator = std::const_iterator<reverse_iterator>; static constexpr size_type extent = Extent; // [span.cons], constructors, copy, and assignment constexpr span() noexcept; template<class It> constexpr explicit(extent != dynamic_extent) span(It first, size_type count); template<class It, class End> constexpr explicit(extent != dynamic_extent) span(It first, End last); template<size_t N> constexpr span(type_identity_t<element_type> (&arr)[N]) noexcept; template<class T, size_t N> constexpr span(array<T, N>& arr) noexcept; template<class T, size_t N> constexpr span(const array<T, N>& arr) noexcept; template<class R> constexpr explicit(extent != dynamic_extent) span(R&& r); constexpr explicit(extent != dynamic_extent) span(std::initializer_list<value_type> il); constexpr span(const span& other) noexcept = default; template<class OtherElementType, size_t OtherExtent> constexpr explicit(see below) span(const span<OtherElementType, OtherExtent>& s) noexcept; constexpr span& operator=(const span& other) noexcept = default; // [span.sub], subviews template<size_t Count> constexpr span<element_type, Count> first() const; template<size_t Count> constexpr span<element_type, Count> last() const; template<size_t Offset, size_t Count = dynamic_extent> constexpr span<element_type, see below> subspan() const; constexpr span<element_type, dynamic_extent> first(size_type count) const; constexpr span<element_type, dynamic_extent> last(size_type count) const; constexpr span<element_type, dynamic_extent> subspan( size_type offset, size_type count = dynamic_extent) const; // [span.obs], observers constexpr size_type size() const noexcept; constexpr size_type size_bytes() const noexcept; [[nodiscard]] constexpr bool empty() const noexcept; // [span.elem], element access constexpr reference operator[](size_type idx) const; constexpr reference at(size_type idx) const; // freestanding-deleted constexpr reference front() const; constexpr reference back() const; constexpr pointer data() const noexcept; // [span.iterators], iterator support constexpr iterator begin() const noexcept; constexpr iterator end() const noexcept; constexpr const_iterator cbegin() const noexcept { return begin(); } constexpr const_iterator cend() const noexcept { return end(); } constexpr reverse_iterator rbegin() const noexcept; constexpr reverse_iterator rend() const noexcept; constexpr const_reverse_iterator crbegin() const noexcept { return rbegin(); } constexpr const_reverse_iterator crend() const noexcept { return rend(); } private: pointer data_; // exposition only size_type size_; // exposition only }; template<class It, class EndOrSize> span(It, EndOrSize) -> span<remove_reference_t<iter_reference_t<It>>>; template<class T, size_t N> span(T (&)[N]) -> span<T, N>; template<class T, size_t N> span(array<T, N>&) -> span<T, N>; template<class T, size_t N> span(const array<T, N>&) -> span<const T, N>; template<class R> span(R&&) -> span<remove_reference_t<ranges::range_reference_t<R>>>; }
span<ElementType, Extent> is a trivially copyable type ([basic.types.general]).
ElementType is required to be a complete object type that is not an abstract class type.
For a span s, any operation that invalidates a pointer in the range [s.data(), s.data() + s.size()) invalidates pointers, iterators, and references to elements of s.

24.7.2.2.2 Constructors, copy, and assignment [span.cons]

constexpr span() noexcept;
Constraints: Extent == dynamic_extent || Extent == 0 is true.
Postconditions: size() == 0 && data() == nullptr.
template<class It> constexpr explicit(extent != dynamic_extent) span(It first, size_type count);
Constraints: Let U be remove_reference_t<iter_reference_t<It>>.
  • is_convertible_v<U(*)[], element_type(*)[]> is true.
    [Note 1: 
    The intent is to allow only qualification conversions of the iterator reference type to element_type.
    — end note]
Preconditions:
Effects: Initializes data_ with to_address(first) and size_ with count.
Throws: Nothing.
template<class It, class End> constexpr explicit(extent != dynamic_extent) span(It first, End last);
Constraints: Let U be remove_reference_t<iter_reference_t<It>>.
  • is_convertible_v<U(*)[], element_type(*)[]> is true.
    [Note 2: 
    The intent is to allow only qualification conversions of the iterator reference type to element_type.
    — end note]
  • End satisfies sized_sentinel_for<It>.
  • is_convertible_v<End, size_t> is false.
Preconditions:
Effects: Initializes data_ with to_address(first) and size_ with last - first.
Throws: When and what last - first throws.
template<size_t N> constexpr span(type_identity_t<element_type> (&arr)[N]) noexcept; template<class T, size_t N> constexpr span(array<T, N>& arr) noexcept; template<class T, size_t N> constexpr span(const array<T, N>& arr) noexcept;
Constraints: Let U be remove_pointer_t<decltype(std​::​data(arr))>.
  • extent == dynamic_extent || N == extent is true, and
  • is_convertible_v<U(*)[], element_type(*)[]> is true.
    [Note 3: 
    The intent is to allow only qualification conversions of the array element type to element_type.
    — end note]
Effects: Constructs a span that is a view over the supplied array.
[Note 4: 
type_identity_t affects class template argument deduction.
— end note]
Postconditions: size() == N && data() == std​::​data(arr) is true.
template<class R> constexpr explicit(extent != dynamic_extent) span(R&& r);
Constraints: Let U be remove_reference_t<ranges​::​range_reference_t<R>>.
  • R satisfies ranges​::​contiguous_range and ranges​::​sized_range.
  • Either R satisfies ranges​::​borrowed_range or is_const_v<element_type> is true.
  • remove_cvref_t<R> is not a specialization of span.
  • remove_cvref_t<R> is not a specialization of array.
  • is_array_v<remove_cvref_t<R>> is false.
  • is_convertible_v<U(*)[], element_type(*)[]> is true.
    [Note 5: 
    The intent is to allow only qualification conversions of the range reference type to element_type.
    — end note]
Preconditions:
Effects: Initializes data_ with ranges​::​data(r) and size_ with ranges​::​size(r).
Throws: What and when ranges​::​data(r) and ranges​::​size(r) throw.
constexpr explicit(extent != dynamic_extent) span(std::initializer_list<value_type> il);
Constraints: is_const_v<element_type> is true.
Preconditions: If extent is not equal to dynamic_extent, then il.size() is equal to extent.
Effects: Initializes data_ with il.begin() and size_ with il.size().
constexpr span(const span& other) noexcept = default;
Postconditions: other.size() == size() && other.data() == data().
template<class OtherElementType, size_t OtherExtent> constexpr explicit(see below) span(const span<OtherElementType, OtherExtent>& s) noexcept;
Constraints:
  • extent == dynamic_extent || OtherExtent == dynamic_extent || extent == OtherExtent is true, and
  • is_convertible_v<OtherElementType(*)[], element_type(*)[]> is true.
    [Note 6: 
    The intent is to allow only qualification conversions of the OtherElementType to element_type.
    — end note]
Preconditions: If extent is not equal to dynamic_extent, then s.size() is equal to extent.
Effects: Constructs a span that is a view over the range [s.data(), s.data() + s.size()).
Postconditions: size() == s.size() && data() == s.data().
Remarks: The expression inside explicit is equivalent to: extent != dynamic_extent && OtherExtent == dynamic_extent
constexpr span& operator=(const span& other) noexcept = default;
Postconditions: size() == other.size() && data() == other.data().

24.7.2.2.3 Deduction guides [span.deduct]

template<class It, class EndOrSize> span(It, EndOrSize) -> span<remove_reference_t<iter_reference_t<It>>>;
Constraints: It satisfies contiguous_iterator.
template<class R> span(R&&) -> span<remove_reference_t<ranges::range_reference_t<R>>>;
Constraints: R satisfies ranges​::​contiguous_range.

24.7.2.2.4 Subviews [span.sub]

template<size_t Count> constexpr span<element_type, Count> first() const;
Mandates: Count <= Extent is true.
Preconditions: Count <= size() is true.
Effects: Equivalent to: return R{data(), Count}; where R is the return type.
template<size_t Count> constexpr span<element_type, Count> last() const;
Mandates: Count <= Extent is true.
Preconditions: Count <= size() is true.
Effects: Equivalent to: return R{data() + (size() - Count), Count}; where R is the return type.
template<size_t Offset, size_t Count = dynamic_extent> constexpr span<element_type, see below> subspan() const;
Mandates: Offset <= Extent && (Count == dynamic_extent || Count <= Extent - Offset) is true.
Preconditions: Offset <= size() && (Count == dynamic_extent || Count <= size() - Offset) is true.
Effects: Equivalent to: return span<ElementType, see below>( data() + Offset, Count != dynamic_extent ? Count : size() - Offset);
Remarks: The second template argument of the returned span type is: Count != dynamic_extent ? Count : (Extent != dynamic_extent ? Extent - Offset : dynamic_extent)
constexpr span<element_type, dynamic_extent> first(size_type count) const;
Preconditions: count <= size() is true.
Effects: Equivalent to: return {data(), count};
constexpr span<element_type, dynamic_extent> last(size_type count) const;
Preconditions: count <= size() is true.
Effects: Equivalent to: return {data() + (size() - count), count};
constexpr span<element_type, dynamic_extent> subspan( size_type offset, size_type count = dynamic_extent) const;
Preconditions: offset <= size() && (count == dynamic_extent || count <= size() - offset) is true.
Effects: Equivalent to: return {data() + offset, count == dynamic_extent ? size() - offset : count};

24.7.2.2.5 Observers [span.obs]

constexpr size_type size() const noexcept;
Effects: Equivalent to: return size_;
constexpr size_type size_bytes() const noexcept;
Effects: Equivalent to: return size() * sizeof(element_type);
[[nodiscard]] constexpr bool empty() const noexcept;
Effects: Equivalent to: return size() == 0;

24.7.2.2.6 Element access [span.elem]

constexpr reference operator[](size_type idx) const;
Preconditions: idx < size() is true.
Effects: Equivalent to: return *(data() + idx);
constexpr reference at(size_type idx) const;
Returns: *(data() + idx).
Throws: out_of_range if idx >= size() is true.
constexpr reference front() const;
Preconditions: empty() is false.
Effects: Equivalent to: return *data();
constexpr reference back() const;
Preconditions: empty() is false.
Effects: Equivalent to: return *(data() + (size() - 1));
constexpr pointer data() const noexcept;
Effects: Equivalent to: return data_;

24.7.2.2.7 Iterator support [span.iterators]

using iterator = implementation-defined;
The type models contiguous_iterator ([iterator.concept.contiguous]), meets the Cpp17RandomAccessIterator requirements ([random.access.iterators]), and meets the requirements for constexpr iterators ([iterator.requirements.general]), whose value type is value_type and whose reference type is reference.
All requirements on container iterators ([container.reqmts]) apply to span​::​iterator as well.
constexpr iterator begin() const noexcept;
Returns: An iterator referring to the first element in the span.
If empty() is true, then it returns the same value as end().
constexpr iterator end() const noexcept;
Returns: An iterator which is the past-the-end value.
constexpr reverse_iterator rbegin() const noexcept;
Effects: Equivalent to: return reverse_iterator(end());
constexpr reverse_iterator rend() const noexcept;
Effects: Equivalent to: return reverse_iterator(begin());

24.7.2.3 Views of object representation [span.objectrep]

template<class ElementType, size_t Extent> span<const byte, Extent == dynamic_extent ? dynamic_extent : sizeof(ElementType) * Extent> as_bytes(span<ElementType, Extent> s) noexcept;
Effects: Equivalent to: return R{reinterpret_cast<const byte*>(s.data()), s.size_bytes()}; where R is the return type.
template<class ElementType, size_t Extent> span<byte, Extent == dynamic_extent ? dynamic_extent : sizeof(ElementType) * Extent> as_writable_bytes(span<ElementType, Extent> s) noexcept;
Constraints: is_const_v<ElementType> is false.
Effects: Equivalent to: return R{reinterpret_cast<byte*>(s.data()), s.size_bytes()}; where R is the return type.

24.7.3 Multidimensional access [views.multidim]

24.7.3.1 Overview [mdspan.overview]

A multidimensional index space is a Cartesian product of integer intervals.
Each interval can be represented by a half-open range , where and are the lower and upper bounds of the dimension.
The rank of a multidimensional index space is the number of intervals it represents.
The size of a multidimensional index space is the product of for each dimension i if its rank is greater than 0, and 1 otherwise.
An integer r is a rank index of an index space S if r is in the range .
A pack of integers idx is a multidimensional index in a multidimensional index space S (or representation thereof) if both of the following are true:
  • sizeof...(idx) is equal to the rank of S, and
  • for every rank index i of S, the value of idx is an integer in the interval of S.

24.7.3.2 Header <mdspan> synopsis [mdspan.syn]

// all freestanding namespace std { // [mdspan.extents], class template extents template<class IndexType, size_t... Extents> class extents; // [mdspan.extents.dextents], alias template dextents template<class IndexType, size_t Rank> using dextents = see below; // [mdspan.layout], layout mapping struct layout_left; struct layout_right; struct layout_stride; // [mdspan.accessor.default], class template default_accessor template<class ElementType> class default_accessor; // [mdspan.mdspan], class template mdspan template<class ElementType, class Extents, class LayoutPolicy = layout_right, class AccessorPolicy = default_accessor<ElementType>> class mdspan; // [mdspan.submdspan], submdspan creation template<class OffsetType, class LengthType, class StrideType> struct strided_slice; template<class LayoutMapping> struct submdspan_mapping_result; struct full_extent_t { explicit full_extent_t() = default; }; inline constexpr full_extent_t full_extent{}; template<class IndexType, class... Extents, class... SliceSpecifiers> constexpr auto submdspan_extents(const extents<IndexType, Extents...>&, SliceSpecifiers...); // [mdspan.submdspan.submdspan], submdspan function template template<class ElementType, class Extents, class LayoutPolicy, class AccessorPolicy, class... SliceSpecifiers> constexpr auto submdspan( const mdspan<ElementType, Extents, LayoutPolicy, AccessorPolicy>& src, SliceSpecifiers... slices) -> see below; template<class T> concept integral-constant-like = // exposition only is_integral_v<decltype(T::value)> && !is_same_v<bool, remove_const_t<decltype(T::value)>> && convertible_to<T, decltype(T::value)> && equality_comparable_with<T, decltype(T::value)> && bool_constant<T() == T::value>::value && bool_constant<static_cast<decltype(T::value)>(T()) == T::value>::value; template<class T, class IndexType> concept index-pair-like = // exposition only pair-like<T> && convertible_to<tuple_element_t<0, T>, IndexType> && convertible_to<tuple_element_t<1, T>, IndexType>; }

24.7.3.3 Class template extents [mdspan.extents]

24.7.3.3.1 Overview [mdspan.extents.overview]

The class template extents represents a multidimensional index space of rank equal to sizeof...(Extents).
In subclause ([views]), extents is used synonymously with multidimensional index space.
namespace std { template<class IndexType, size_t... Extents> class extents { public: using index_type = IndexType; using size_type = make_unsigned_t<index_type>; using rank_type = size_t; // [mdspan.extents.obs], observers of the multidimensional index space static constexpr rank_type rank() noexcept { return sizeof...(Extents); } static constexpr rank_type rank_dynamic() noexcept { return dynamic-index(rank()); } static constexpr size_t static_extent(rank_type) noexcept; constexpr index_type extent(rank_type) const noexcept; // [mdspan.extents.cons], constructors constexpr extents() noexcept = default; template<class OtherIndexType, size_t... OtherExtents> constexpr explicit(see below) extents(const extents<OtherIndexType, OtherExtents...>&) noexcept; template<class... OtherIndexTypes> constexpr explicit extents(OtherIndexTypes...) noexcept; template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) extents(span<OtherIndexType, N>) noexcept; template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) extents(const array<OtherIndexType, N>&) noexcept; // [mdspan.extents.cmp], comparison operators template<class OtherIndexType, size_t... OtherExtents> friend constexpr bool operator==(const extents&, const extents<OtherIndexType, OtherExtents...>&) noexcept; // [mdspan.extents.expo], exposition-only helpers constexpr size_t fwd-prod-of-extents(rank_type) const noexcept; // exposition only constexpr size_t rev-prod-of-extents(rank_type) const noexcept; // exposition only template<class OtherIndexType> static constexpr auto index-cast(OtherIndexType&&) noexcept; // exposition only private: static constexpr rank_type dynamic-index(rank_type) noexcept; // exposition only static constexpr rank_type dynamic-index-inv(rank_type) noexcept; // exposition only array<index_type, rank_dynamic()> dynamic-extents{}; // exposition only }; template<class... Integrals> explicit extents(Integrals...) -> see below; }
Mandates:
  • IndexType is a signed or unsigned integer type, and
  • each element of Extents is either equal to dynamic_extent, or is representable as a value of type IndexType.
Each specialization of extents models regular and is trivially copyable.
Let be the element of Extents.
is a dynamic extent if it is equal to dynamic_extent, otherwise is a static extent.
Let be the value of dynamic-extents[dynamic-index(r)] if is a dynamic extent, otherwise .
The interval of the multidimensional index space represented by an extents object is .

24.7.3.3.2 Exposition-only helpers [mdspan.extents.expo]

static constexpr rank_type dynamic-index(rank_type i) noexcept;
Preconditions: i <= rank() is true.
Returns: The number of with for which is a dynamic extent.
static constexpr rank_type dynamic-index-inv(rank_type i) noexcept;
Preconditions: i < rank_dynamic() is true.
Returns: The minimum value of r such that dynamic-index(r + 1) == i + 1 is true.
constexpr size_t fwd-prod-of-extents(rank_type i) const noexcept;
Preconditions: i <= rank() is true.
Returns: If i > 0 is true, the product of extent(k) for all k in the range [0, i), otherwise 1.
constexpr size_t rev-prod-of-extents(rank_type i) const noexcept;
Preconditions: i < rank() is true.
Returns: If i + 1 < rank() is true, the product of extent(k) for all k in the range [i + 1, rank()), otherwise 1.
template<class OtherIndexType> static constexpr auto index-cast(OtherIndexType&& i) noexcept;
Effects:
  • If OtherIndexType is an integral type other than bool, then equivalent to return i;,
  • otherwise, equivalent to return static_cast<index_type>(i);.
[Note 1: 
This function will always return an integral type other than bool.
Since this function's call sites are constrained on convertibility of OtherIndexType to index_type, integer-class types can use the static_cast branch without loss of precision.
— end note]

24.7.3.3.3 Constructors [mdspan.extents.cons]

template<class OtherIndexType, size_t... OtherExtents> constexpr explicit(see below) extents(const extents<OtherIndexType, OtherExtents...>& other) noexcept;
Constraints:
  • sizeof...(OtherExtents) == rank() is true.
  • ((OtherExtents == dynamic_extent || Extents == dynamic_extent || OtherExtents ==
    Extents) && ...)
    is true.
Preconditions:
  • other.extent(r) equals for each r for which is a static extent, and
  • either
    • sizeof...(OtherExtents) is zero, or
    • other.extent(r) is representable as a value of type index_type for every rank index r of other.
Postconditions: *this == other is true.
Remarks: The expression inside explicit is equivalent to: (((Extents != dynamic_extent) && (OtherExtents == dynamic_extent)) || ... ) || (numeric_limits<index_type>::max() < numeric_limits<OtherIndexType>::max())
template<class... OtherIndexTypes> constexpr explicit extents(OtherIndexTypes... exts) noexcept;
Let N be sizeof...(OtherIndexTypes), and let exts_arr be array<index_type, N>{static_cast<
index_type>(std​::​move(exts))...}
.
Constraints:
  • (is_convertible_v<OtherIndexTypes, index_type> && ...) is true,
  • (is_nothrow_constructible_v<index_type, OtherIndexTypes> && ...) is true, and
  • N == rank_dynamic() || N == rank() is true.
    [Note 1: 
    One can construct extents from just dynamic extents, which are all the values getting stored, or from all the extents with a precondition.
    — end note]
Preconditions:
  • If N != rank_dynamic() is true, exts_arr[r] equals for each r for which is a static extent, and
  • either
    • sizeof...(exts) == 0 is true, or
    • each element of exts is representable as a nonnegative value of type index_type.
Postconditions: *this == extents(exts_arr) is true.
template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) extents(span<OtherIndexType, N> exts) noexcept; template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) extents(const array<OtherIndexType, N>& exts) noexcept;
Constraints:
  • is_convertible_v<const OtherIndexType&, index_type> is true,
  • is_nothrow_constructible_v<index_type, const OtherIndexType&> is true, and
  • N == rank_dynamic() || N == rank() is true.
Preconditions:
  • If N != rank_dynamic() is true, exts[r] equals for each r for which is a static extent, and
  • either
    • N is zero, or
    • exts[r] is representable as a nonnegative value of type index_type for every rank index r.
Effects:
  • If N equals dynamic_rank(), for all d in the range [0, rank_dynamic()), direct-non-list-initializes dynamic-extents[d] with as_const(exts[d]).
  • Otherwise, for all d in the range [0, rank_dynamic()), direct-non-list-initializes dynamic-extents[d] with as_const(exts[dynamic-index-inv(d)]).
template<class... Integrals> explicit extents(Integrals...) -> see below;
Constraints: (is_convertible_v<Integrals, size_t> && ...) is true.
Remarks: The deduced type is dextents<size_t, sizeof...(Integrals)>.

24.7.3.3.4 Observers of the multidimensional index space [mdspan.extents.obs]

static constexpr size_t static_extent(rank_type i) noexcept;
Preconditions: i < rank() is true.
Returns: .
constexpr index_type extent(rank_type i) const noexcept;
Preconditions: i < rank() is true.
Returns: .

24.7.3.3.5 Comparison operators [mdspan.extents.cmp]

template<class OtherIndexType, size_t... OtherExtents> friend constexpr bool operator==(const extents& lhs, const extents<OtherIndexType, OtherExtents...>& rhs) noexcept;
Returns: true if lhs.rank() equals rhs.rank() and if lhs.extent(r) equals rhs.extent(r) for every rank index r of rhs, otherwise false.

24.7.3.3.6 Alias template dextents [mdspan.extents.dextents]

template<class IndexType, size_t Rank> using dextents = see below;
Result: A type E that is a specialization of extents such that E​::​rank() == Rank && E​::​rank() == E​::​rank_dynamic() is true, and E​::​index_type denotes IndexType.

24.7.3.4 Layout mapping [mdspan.layout]

24.7.3.4.1 General [mdspan.layout.general]

  • M denotes a layout mapping class.
  • m denotes a (possibly const) value of type M.
  • i and j are packs of (possibly const) integers that are multidimensional indices in m.extents() ([mdspan.overview]).
    [Note 1: 
    The type of each element of the packs can be a different integer type.
    — end note]
  • r is a (possibly const) rank index of typename M​::​extents_type.
  • is a pack of (possibly const) integers for which sizeof...() == M​::​extents_type​::​rank() is true, the element is equal to 1, and all other elements are equal to 0.
In subclauses [mdspan.layout.reqmts] through [mdspan.layout.stride], let is-mapping-of be the exposition-only variable template defined as follows: template<class Layout, class Mapping> constexpr bool is-mapping-of = // exposition only is_same_v<typename Layout::template mapping<typename Mapping::extents_type>, Mapping>;

24.7.3.4.2 Requirements [mdspan.layout.reqmts]

A type M meets the layout mapping requirements if
  • M models copyable and equality_comparable,
  • is_nothrow_move_constructible_v<M> is true,
  • is_nothrow_move_assignable_v<M> is true,
  • is_nothrow_swappable_v<M> is true, and
  • the following types and expressions are well-formed and have the specified semantics.
typename M::extents_type
Result: A type that is a specialization of extents.
typename M::index_type
Result: typename M​::​extents_type​::​index_type.
typename M::rank_type
Result: typename M​::​extents_type​::​rank_type.
typename M::layout_type
Result: A type MP that meets the layout mapping policy requirements ([mdspan.layout.policy.reqmts]) and for which is-mapping-of<MP, M> is true.
m.extents()
Result: const typename M​::​extents_type&
m(i...)
Result: typename M​::​index_type
Returns: A nonnegative integer less than numeric_limits<typename M​::​index_type>​::​max() and less than or equal to numeric_limits<size_t>​::​max().
m(i...) == m(static_cast<typename M::index_type>(i)...)
Result: bool
Returns: true
m.required_span_size()
Result: typename M​::​index_type
Returns: If the size of the multidimensional index space m.extents() is 0, then 0, else 1 plus the maximum value of m(i...) for all i.
m.is_unique()
Result: bool
Returns: true only if for every i and j where (i != j || ...) is true, m(i...) != m(j...) is true.
[Note 1: 
A mapping can return false even if the condition is met.
For certain layouts, it is possibly not feasible to determine efficiently whether the layout is unique.
— end note]
m.is_exhaustive()
Result: bool
Returns: true only if for all k in the range [0, m.required_span_size()) there exists an i such that m(i...) equals k.
[Note 2: 
A mapping can return false even if the condition is met.
For certain layouts, it is possibly not feasible to determine efficiently whether the layout is exhaustive.
— end note]
m.is_strided()
Result: bool
Returns: true only if for every rank index r of m.extents() there exists an integer such that, for all i where is a multidimensional index in m.extents() ([mdspan.overview]), m((i + )...) - m(i...) equals .
[Note 3: 
This implies that for a strided layout .
— end note]
[Note 4: 
A mapping can return false even if the condition is met.
For certain layouts, it is possibly not feasible to determine efficiently whether the layout is strided.
— end note]
m.stride(r)
Preconditions: m.is_strided() is true.
Result: typename M​::​index_type
Returns: as defined in m.is_strided() above.
M::is_always_unique()
Result: A constant expression ([expr.const]) of type bool.
Returns: true only if m.is_unique() is true for all possible objects m of type M.
[Note 5: 
A mapping can return false even if the above condition is met.
For certain layout mappings, it is possibly not feasible to determine whether every instance is unique.
— end note]
M::is_always_exhaustive()
Result: A constant expression ([expr.const]) of type bool.
Returns: true only if m.is_exhaustive() is true for all possible objects m of type M.
[Note 6: 
A mapping can return false even if the above condition is met.
For certain layout mappings, it is possibly not feasible to determine whether every instance is exhaustive.
— end note]
M::is_always_strided()
Result: A constant expression ([expr.const]) of type bool.
Returns: true only if m.is_strided() is true for all possible objects m of type M.
[Note 7: 
A mapping can return false even if the above condition is met.
For certain layout mappings, it is possibly not feasible to determine whether every instance is strided.
— end note]

24.7.3.4.3 Layout mapping policy requirements [mdspan.layout.policy.reqmts]

A type MP meets the layout mapping policy requirements if for a type E that is a specialization of extents, MP​::​mapping<E> is valid and denotes a type X that meets the layout mapping requirements ([mdspan.layout.reqmts]), and for which the qualified-id X​::​layout_type is valid and denotes the type MP and the qualified-id X​::​extents_type denotes E.

24.7.3.4.4 Layout mapping policies [mdspan.layout.policy.overview]

namespace std { struct layout_left { template<class Extents> class mapping; }; struct layout_right { template<class Extents> class mapping; }; struct layout_stride { template<class Extents> class mapping; }; }
Each of layout_left, layout_right, and layout_stride meets the layout mapping policy requirements and is a trivial type.

24.7.3.4.5 Class template layout_left​::​mapping [mdspan.layout.left]

24.7.3.4.5.1 Overview [mdspan.layout.left.overview]

layout_left provides a layout mapping where the leftmost extent has stride 1, and strides increase left-to-right as the product of extents.
namespace std { template<class Extents> class layout_left::mapping { public: using extents_type = Extents; using index_type = typename extents_type::index_type; using size_type = typename extents_type::size_type; using rank_type = typename extents_type::rank_type; using layout_type = layout_left; // [mdspan.layout.left.cons], constructors constexpr mapping() noexcept = default; constexpr mapping(const mapping&) noexcept = default; constexpr mapping(const extents_type&) noexcept; template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const mapping<OtherExtents>&) noexcept; template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const layout_right::mapping<OtherExtents>&) noexcept; template<class OtherExtents> constexpr explicit(extents_type::rank() > 0) mapping(const layout_stride::mapping<OtherExtents>&); constexpr mapping& operator=(const mapping&) noexcept = default; // [mdspan.layout.left.obs], observers constexpr const extents_type& extents() const noexcept { return extents_; } constexpr index_type required_span_size() const noexcept; template<class... Indices> constexpr index_type operator()(Indices...) const noexcept; static constexpr bool is_always_unique() noexcept { return true; } static constexpr bool is_always_exhaustive() noexcept { return true; } static constexpr bool is_always_strided() noexcept { return true; } static constexpr bool is_unique() noexcept { return true; } static constexpr bool is_exhaustive() noexcept { return true; } static constexpr bool is_strided() noexcept { return true; } constexpr index_type stride(rank_type) const noexcept; template<class OtherExtents> friend constexpr bool operator==(const mapping&, const mapping<OtherExtents>&) noexcept; private: extents_type extents_{}; // exposition only // [mdspan.submdspan.mapping], submdspan mapping specialization template<class... SliceSpecifiers> constexpr auto submdspan-mapping-impl( // exposition only SliceSpecifiers... slices) const -> see below; template<class... SliceSpecifiers> friend constexpr auto submdspan_mapping( const mapping& src, SliceSpecifiers... slices) { return src.submdspan-mapping-impl(slices...); } }; }
If Extents is not a specialization of extents, then the program is ill-formed.
layout_left​::​mapping<E> is a trivially copyable type that models regular for each E.
Mandates: If Extents​::​rank_dynamic() == 0 is true, then the size of the multidimensional index space Extents() is representable as a value of type typename Extents​::​index_type.

24.7.3.4.5.2 Constructors [mdspan.layout.left.cons]

constexpr mapping(const extents_type& e) noexcept;
Preconditions: The size of the multidimensional index space e is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with e.
template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const mapping<OtherExtents>& other) noexcept;
Constraints: is_constructible_v<extents_type, OtherExtents> is true.
Preconditions: other.required_span_size() is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with other.extents().
template<class OtherExents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const layout_right::mapping<OtherExtents>& other) noexcept;
Constraints:
  • extents_type​::​rank() <= 1 is true, and
  • is_constructible_v<extents_type, OtherExtents> is true.
Preconditions: other.required_span_size() is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with other.extents().
template<class OtherExtents> constexpr explicit(extents_type::rank() > 0) mapping(const layout_stride::mapping<OtherExtents>& other);
Constraints: is_constructible_v<extents_type, OtherExtents> is true.
Preconditions:
  • If extents_type​::​rank() > 0 is true, then for all r in the range [0, extents_type​::​rank()), other.stride(r) equals other.extents().fwd-prod-of-extents(r), and
  • other.required_span_size() is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with other.extents().

24.7.3.4.5.3 Observers [mdspan.layout.left.obs]

constexpr index_type required_span_size() const noexcept;
Returns: extents().fwd-prod-of-extents(extents_type​::​rank()).
template<class... Indices> constexpr index_type operator()(Indices... i) const noexcept;
Constraints:
  • sizeof...(Indices) == extents_type​::​rank() is true,
  • (is_convertible_v<Indices, index_type> && ...) is true, and
  • (is_nothrow_constructible_v<index_type, Indices> && ...) is true.
Preconditions: extents_type​::​index-cast(i) is a multidimensional index in extents_ ([mdspan.overview]).
Effects: Let P be a parameter pack such that is_same_v<index_sequence_for<Indices...>, index_sequence<P...>> is true.
Equivalent to: return ((static_cast<index_type>(i) * stride(P)) + ... + 0);
constexpr index_type stride(rank_type i) const;
Constraints: extents_type​::​rank() > 0 is true.
Preconditions: i < extents_type​::​rank() is true.
Returns: extents().fwd-prod-of-extents(i).
template<class OtherExtents> friend constexpr bool operator==(const mapping& x, const mapping<OtherExtents>& y) noexcept;
Constraints: extents_type​::​rank() == OtherExtents​::​rank() is true.
Effects: Equivalent to: return x.extents() == y.extents();

24.7.3.4.6 Class template layout_right​::​mapping [mdspan.layout.right]

24.7.3.4.6.1 Overview [mdspan.layout.right.overview]

layout_right provides a layout mapping where the rightmost extent is stride 1, and strides increase right-to-left as the product of extents.
namespace std { template<class Extents> class layout_right::mapping { public: using extents_type = Extents; using index_type = typename extents_type::index_type; using size_type = typename extents_type::size_type; using rank_type = typename extents_type::rank_type; using layout_type = layout_right; // [mdspan.layout.right.cons], constructors constexpr mapping() noexcept = default; constexpr mapping(const mapping&) noexcept = default; constexpr mapping(const extents_type&) noexcept; template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const mapping<OtherExtents>&) noexcept; template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const layout_left::mapping<OtherExtents>&) noexcept; template<class OtherExtents> constexpr explicit(extents_type::rank() > 0) mapping(const layout_stride::mapping<OtherExtents>&) noexcept; constexpr mapping& operator=(const mapping&) noexcept = default; // [mdspan.layout.right.obs], observers constexpr const extents_type& extents() const noexcept { return extents_; } constexpr index_type required_span_size() const noexcept; template<class... Indices> constexpr index_type operator()(Indices...) const noexcept; static constexpr bool is_always_unique() noexcept { return true; } static constexpr bool is_always_exhaustive() noexcept { return true; } static constexpr bool is_always_strided() noexcept { return true; } static constexpr bool is_unique() noexcept { return true; } static constexpr bool is_exhaustive() noexcept { return true; } static constexpr bool is_strided() noexcept { return true; } constexpr index_type stride(rank_type) const noexcept; template<class OtherExtents> friend constexpr bool operator==(const mapping&, const mapping<OtherExtents>&) noexcept; private: extents_type extents_{}; // exposition only // [mdspan.submdspan.mapping], submdspan mapping specialization template<class... SliceSpecifiers> constexpr auto submdspan-mapping-impl( // exposition only SliceSpecifiers... slices) const -> see below; template<class... SliceSpecifiers> friend constexpr auto submdspan_mapping( const mapping& src, SliceSpecifiers... slices) { return src.submdspan-mapping-impl(slices...); } }; }
If Extents is not a specialization of extents, then the program is ill-formed.
layout_right​::​mapping<E> is a trivially copyable type that models regular for each E.
Mandates: If Extents​::​rank_dynamic() == 0 is true, then the size of the multidimensional index space Extents() is representable as a value of type typename Extents​::​index_type.

24.7.3.4.6.2 Constructors [mdspan.layout.right.cons]

constexpr mapping(const extents_type& e) noexcept;
Preconditions: The size of the multidimensional index space e is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with e.
template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const mapping<OtherExtents>& other) noexcept;
Constraints: is_constructible_v<extents_type, OtherExtents> is true.
Preconditions: other.required_span_size() is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with other.extents().
template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const layout_left::mapping<OtherExtents>& other) noexcept;
Constraints:
  • extents_type​::​rank() <= 1 is true, and
  • is_constructible_v<extents_type, OtherExtents> is true.
Preconditions: other.required_span_size() is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with other.extents().
template<class OtherExtents> constexpr explicit(extents_type::rank() > 0) mapping(const layout_stride::mapping<OtherExtents>& other) noexcept;
Constraints: is_constructible_v<extents_type, OtherExtents> is true.
Preconditions:
  • If extents_type​::​rank() > 0 is true, then for all r in the range [0, extents_type​::​rank()), other.stride(r) equals other.extents().rev-prod-of-extents(r).
  • other.required_span_size() is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with other.extents().

24.7.3.4.6.3 Observers [mdspan.layout.right.obs]

index_type required_span_size() const noexcept;
Returns: extents().fwd-prod-of-extents(extents_type​::​rank()).
template<class... Indices> constexpr index_type operator()(Indices... i) const noexcept;
Constraints:
  • sizeof...(Indices) == extents_type​::​rank() is true,
  • (is_convertible_v<Indices, index_type> && ...) is true, and
  • (is_nothrow_constructible_v<index_type, Indices> && ...) is true.
Preconditions: extents_type​::​index-cast(i) is a multidimensional index in extents_ ([mdspan.overview]).
Effects: Let P be a parameter pack such that is_same_v<index_sequence_for<Indices...>, index_sequence<P...>> is true.
Equivalent to: return ((static_cast<index_type>(i) * stride(P)) + ... + 0);
constexpr index_type stride(rank_type i) const noexcept;
Constraints: extents_type​::​rank() > 0 is true.
Preconditions: i < extents_type​::​rank() is true.
Returns: extents().rev-prod-of-extents(i).
template<class OtherExtents> friend constexpr bool operator==(const mapping& x, const mapping<OtherExtents>& y) noexcept;
Constraints: extents_type​::​rank() == OtherExtents​::​rank() is true.
Effects: Equivalent to: return x.extents() == y.extents();

24.7.3.4.7 Class template layout_stride​::​mapping [mdspan.layout.stride]

24.7.3.4.7.1 Overview [mdspan.layout.stride.overview]

layout_stride provides a layout mapping where the strides are user-defined.
namespace std { template<class Extents> class layout_stride::mapping { public: using extents_type = Extents; using index_type = typename extents_type::index_type; using size_type = typename extents_type::size_type; using rank_type = typename extents_type::rank_type; using layout_type = layout_stride; private: static constexpr rank_type rank_ = extents_type::rank(); // exposition only public: // [mdspan.layout.stride.cons], constructors constexpr mapping() noexcept; constexpr mapping(const mapping&) noexcept = default; template<class OtherIndexType> constexpr mapping(const extents_type&, span<OtherIndexType, rank_>) noexcept; template<class OtherIndexType> constexpr mapping(const extents_type&, const array<OtherIndexType, rank_>&) noexcept; template<class StridedLayoutMapping> constexpr explicit(see below) mapping(const StridedLayoutMapping&) noexcept; constexpr mapping& operator=(const mapping&) noexcept = default; // [mdspan.layout.stride.obs], observers constexpr const extents_type& extents() const noexcept { return extents_; } constexpr array<index_type, rank_> strides() const noexcept { return strides_; } constexpr index_type required_span_size() const noexcept; template<class... Indices> constexpr index_type operator()(Indices...) const noexcept; static constexpr bool is_always_unique() noexcept { return true; } static constexpr bool is_always_exhaustive() noexcept { return false; } static constexpr bool is_always_strided() noexcept { return true; } static constexpr bool is_unique() noexcept { return true; } constexpr bool is_exhaustive() const noexcept; static constexpr bool is_strided() noexcept { return true; } constexpr index_type stride(rank_type i) const noexcept { return strides_[i]; } template<class OtherMapping> friend constexpr bool operator==(const mapping&, const OtherMapping&) noexcept; private: extents_type extents_{}; // exposition only array<index_type, rank_> strides_{}; // exposition only // [mdspan.submdspan.mapping], submdspan mapping specialization template<class... SliceSpecifiers> constexpr auto submdspan-mapping-impl( // exposition only SliceSpecifiers... slices) const -> see below; template<class... SliceSpecifiers> friend constexpr auto submdspan_mapping( const mapping& src, SliceSpecifiers... slices) { return src.submdspan-mapping-impl(slices...); } }; }
If Extents is not a specialization of extents, then the program is ill-formed.
layout_stride​::​mapping<E> is a trivially copyable type that models regular for each E.
Mandates: If Extents​::​rank_dynamic() == 0 is true, then the size of the multidimensional index space Extents() is representable as a value of type typename Extents​::​index_type.

24.7.3.4.7.2 Exposition-only helpers [mdspan.layout.stride.expo]

Let REQUIRED-SPAN-SIZE(e, strides) be:
  • 1, if e.rank() == 0 is true,
  • otherwise 0, if the size of the multidimensional index space e is 0,
  • otherwise 1 plus the sum of products of (e.extent(r) - 1) and extents_type::index-cast(strides[r]) for all r in the range [0, e.rank()).
Let OFFSET(m) be:
  • m(), if e.rank() == 0 is true,
  • otherwise 0, if the size of the multidimensional index space e is 0,
  • otherwise m(z...) for a pack of integers z that is a multidimensional index in m.extents() and each element of z equals 0.
Let is-extents be the exposition-only variable template defined as follows: template<class T> constexpr bool is-extents = false; // exposition only template<class IndexType, size_t... Args> constexpr bool is-extents<extents<IndexType, Args...>> = true; // exposition only
Let layout-mapping-alike be the exposition-only concept defined as follows: template<class M> concept layout-mapping-alike = requires { // exposition only requires is-extents<typename M::extents_type>; { M::is_always_strided() } -> same_as<bool>; { M::is_always_exhaustive() } -> same_as<bool>; { M::is_always_unique() } -> same_as<bool>; bool_constant<M::is_always_strided()>::value; bool_constant<M::is_always_exhaustive()>::value; bool_constant<M::is_always_unique()>::value; };
[Note 1: 
This concept checks that the functions M​::​is_always_strided(), M​::​is_always_exhaustive(), and M​::​is_always_unique() exist, are constant expressions, and have a return type of bool.
— end note]

24.7.3.4.7.3 Constructors [mdspan.layout.stride.cons]

constexpr mapping() noexcept;
Preconditions: layout_right​::​mapping<extents_type>().required_span_size() is representable as a value of type index_type ([basic.fundamental]).
Effects: Direct-non-list-initializes extents_ with extents_type(), and for all d in the range [0, rank_), direct-non-list-initializes strides_[d] with layout_right​::​mapping<extents_type>().stride(d).
template<class OtherIndexType> constexpr mapping(const extents_type& e, span<OtherIndexType, rank_> s) noexcept; template<class OtherIndexType> constexpr mapping(const extents_type& e, const array<OtherIndexType, rank_>& s) noexcept;
Constraints:
  • is_convertible_v<const OtherIndexType&, index_type> is true, and
  • is_nothrow_constructible_v<index_type, const OtherIndexType&> is true.
Preconditions:
  • The result of converting s[i] to index_type is greater than 0 for all i in the range [0, rank_).
  • REQUIRED-SPAN-SIZE(e, s) is representable as a value of type index_type ([basic.fundamental]).
  • If rank_ is greater than 0, then there exists a permutation P of the integers in the range [0, rank_), such that s[] >= s[] * e.extent(p) is true for all i in the range [1, rank_), where is the element of P.
    [Note 1: 
    For layout_stride, this condition is necessary and sufficient for is_unique() to be true.
    — end note]
Effects: Direct-non-list-initializes extents_ with e, and for all d in the range [0, rank_), direct-non-list-initializes strides_[d] with as_const(s[d]).
template<class StridedLayoutMapping> constexpr explicit(see below) mapping(const StridedLayoutMapping& other) noexcept;
Constraints:
  • layout-mapping-alike<StridedLayoutMapping> is satisfied.
  • is_constructible_v<extents_type, typename StridedLayoutMapping​::​extents_type> is
    true.
  • StridedLayoutMapping​::​is_always_unique() is true.
  • StridedLayoutMapping​::​is_always_strided() is true.
Preconditions:
Effects: Direct-non-list-initializes extents_ with other.extents(), and for all d in the range [0, rank_), direct-non-list-initializes strides_[d] with other.stride(d).
Remarks: The expression inside explicit is equivalent to: !(is_convertible_v<typename StridedLayoutMapping::extents_type, extents_type> && (is-mapping-of<layout_left, StridedLayoutMapping> || is-mapping-of<layout_right, StridedLayoutMapping> || is-mapping-of<layout_stride, StridedLayoutMapping>))

24.7.3.4.7.4 Observers [mdspan.layout.stride.obs]

constexpr index_type required_span_size() const noexcept;
Returns: REQUIRED-SPAN-SIZE(extents(), strides_).
template<class... Indices> constexpr index_type operator()(Indices... i) const noexcept;
Constraints:
  • sizeof...(Indices) == rank_ is true,
  • (is_convertible_v<Indices, index_type> && ...) is true, and
  • (is_nothrow_constructible_v<index_type, Indices> && ...) is true.
Preconditions: extents_type​::​index-cast(i) is a multidimensional index in extents_ ([mdspan.overview]).
Effects: Let P be a parameter pack such that is_same_v<index_sequence_for<Indices...>, index_sequence<P...>> is true.
Equivalent to: return ((static_cast<index_type>(i) * stride(P)) + ... + 0);
constexpr bool is_exhaustive() const noexcept;
Returns:
  • true if rank_ is 0.
  • Otherwise, true if there is a permutation P of the integers in the range [0, rank_) such that stride() equals 1, and stride() equals stride() * extents().extent() for i in the range [1, rank_), where is the element of P.
  • Otherwise, false.
template<class OtherMapping> friend constexpr bool operator==(const mapping& x, const OtherMapping& y) noexcept;
Constraints:
Preconditions: OtherMapping meets the layout mapping requirements ([mdspan.layout.policy.reqmts]).
Returns: true if x.extents() == y.extents() is true, OFFSET(y) == 0 is true, and each of x.stride(r) == y.stride(r) is true for r in the range [0, x.extents().rank()).
Otherwise, false.

24.7.3.5 Accessor policy [mdspan.accessor]

24.7.3.5.1 General [mdspan.accessor.general]

An accessor policy defines types and operations by which a reference to a single object is created from an abstract data handle to a number of such objects and an index.
A range of indices is an accessible range of a given data handle and an accessor if, for each i in the range, the accessor policy's access function produces a valid reference to an object.
  • A denotes an accessor policy.
  • a denotes a value of type A or const A.
  • p denotes a value of type A​::​data_handle_type or const A​::​data_handle_type.
    [Note 1: 
    The type A​::​data_handle_type need not be dereferenceable.
    — end note]
  • n, i, and j each denote values of type size_t.

24.7.3.5.2 Requirements [mdspan.accessor.reqmts]

A type A meets the accessor policy requirements if
  • A models copyable,
  • is_nothrow_move_constructible_v<A> is true,
  • is_nothrow_move_assignable_v<A> is true,
  • is_nothrow_swappable_v<A> is true, and
  • the following types and expressions are well-formed and have the specified semantics.
typename A::element_type
Result: A complete object type that is not an abstract class type.
typename A::data_handle_type
Result: A type that models copyable, and for which is_nothrow_move_constructible_v<A​::​data_handle_type> is true, is_nothrow_move_assignable_v<A​::​data_handle_type> is true, and is_nothrow_swappable_v<A​::​data_handle_type> is true.
[Note 1: 
The type of data_handle_type need not be element_type*.
— end note]
typename A::reference
Result: A type that models common_reference_with<A​::​reference&&, A​::​element_type&>.
[Note 2: 
The type of reference need not be element_type&.
— end note]
typename A::offset_policy
Result: A type OP such that:
  • OP meets the accessor policy requirements,
  • constructible_from<OP, const A&> is modeled, and
  • is_same_v<typename OP​::​element_type, typename A​::​element_type> is true.
a.access(p, i)
Result: A​::​reference
Remarks: The expression is equality preserving.
[Note 3: 
Concrete accessor policies can impose preconditions for their access function.
However, they might not.
For example, an accessor where p is span<A​::​element_type, dynamic_extent> and access(p, i) returns p[i % p.size()] does not need to impose a precondition on i.
— end note]
a.offset(p, i)
Result: A​::​offset_policy​::​data_handle_type
Returns: q such that for b being A​::​offset_policy(a), and any integer n for which [0, n) is an accessible range of p and a:
  • is an accessible range of q and b; and
  • b.access(q, j) provides access to the same element as a.access(p, i + j), for every j in the range .
Remarks: The expression is equality-preserving.

24.7.3.5.3 Class template default_accessor [mdspan.accessor.default]

24.7.3.5.3.1 Overview [mdspan.accessor.default.overview]

namespace std { template<class ElementType> struct default_accessor { using offset_policy = default_accessor; using element_type = ElementType; using reference = ElementType&; using data_handle_type = ElementType*; constexpr default_accessor() noexcept = default; template<class OtherElementType> constexpr default_accessor(default_accessor<OtherElementType>) noexcept; constexpr reference access(data_handle_type p, size_t i) const noexcept; constexpr data_handle_type offset(data_handle_type p, size_t i) const noexcept; }; }
default_accessor meets the accessor policy requirements.
ElementType is required to be a complete object type that is neither an abstract class type nor an array type.
Each specialization of default_accessor is a trivially copyable type that models semiregular.
is an accessible range for an object p of type data_handle_type and an object of type default_accessor if and only if [p, p + n) is a valid range.

24.7.3.5.3.2 Members [mdspan.accessor.default.members]

template<class OtherElementType> constexpr default_accessor(default_accessor<OtherElementType>) noexcept {}
Constraints: is_convertible_v<OtherElementType(*)[], element_type(*)[]> is true.
constexpr reference access(data_handle_type p, size_t i) const noexcept;
Effects: Equivalent to: return p[i];
constexpr data_handle_type offset(data_handle_type p, size_t i) const noexcept;
Effects: Equivalent to: return p + i;

24.7.3.6 Class template mdspan [mdspan.mdspan]

24.7.3.6.1 Overview [mdspan.mdspan.overview]

mdspan is a view of a multidimensional array of elements.
namespace std { template<class ElementType, class Extents, class LayoutPolicy = layout_right, class AccessorPolicy = default_accessor<ElementType>> class mdspan { public: using extents_type = Extents; using layout_type = LayoutPolicy; using accessor_type = AccessorPolicy; using mapping_type = typename layout_type::template mapping<extents_type>; using element_type = ElementType; using value_type = remove_cv_t<element_type>; using index_type = typename extents_type::index_type; using size_type = typename extents_type::size_type; using rank_type = typename extents_type::rank_type; using data_handle_type = typename accessor_type::data_handle_type; using reference = typename accessor_type::reference; static constexpr rank_type rank() noexcept { return extents_type::rank(); } static constexpr rank_type rank_dynamic() noexcept { return extents_type::rank_dynamic(); } static constexpr size_t static_extent(rank_type r) noexcept { return extents_type::static_extent(r); } constexpr index_type extent(rank_type r) const noexcept { return extents().extent(r); } // [mdspan.mdspan.cons], constructors constexpr mdspan(); constexpr mdspan(const mdspan& rhs) = default; constexpr mdspan(mdspan&& rhs) = default; template<class... OtherIndexTypes> constexpr explicit mdspan(data_handle_type ptr, OtherIndexTypes... exts); template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) mdspan(data_handle_type p, span<OtherIndexType, N> exts); template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) mdspan(data_handle_type p, const array<OtherIndexType, N>& exts); constexpr mdspan(data_handle_type p, const extents_type& ext); constexpr mdspan(data_handle_type p, const mapping_type& m); constexpr mdspan(data_handle_type p, const mapping_type& m, const accessor_type& a); template<class OtherElementType, class OtherExtents, class OtherLayoutPolicy, class OtherAccessorPolicy> constexpr explicit(see below) mdspan(const mdspan<OtherElementType, OtherExtents, OtherLayoutPolicy, OtherAccessorPolicy>& other); constexpr mdspan& operator=(const mdspan& rhs) = default; constexpr mdspan& operator=(mdspan&& rhs) = default; // [mdspan.mdspan.members], members template<class... OtherIndexTypes> constexpr reference operator[](OtherIndexTypes... indices) const; template<class OtherIndexType> constexpr reference operator[](span<OtherIndexType, rank()> indices) const; template<class OtherIndexType> constexpr reference operator[](const array<OtherIndexType, rank()>& indices) const; constexpr size_type size() const noexcept; [[nodiscard]] constexpr bool empty() const noexcept; friend constexpr void swap(mdspan& x, mdspan& y) noexcept; constexpr const extents_type& extents() const noexcept { return map_.extents(); } constexpr const data_handle_type& data_handle() const noexcept { return ptr_; } constexpr const mapping_type& mapping() const noexcept { return map_; } constexpr const accessor_type& accessor() const noexcept { return acc_; } static constexpr bool is_always_unique() { return mapping_type::is_always_unique(); } static constexpr bool is_always_exhaustive() { return mapping_type::is_always_exhaustive(); } static constexpr bool is_always_strided() { return mapping_type::is_always_strided(); } constexpr bool is_unique() const { return map_.is_unique(); } constexpr bool is_exhaustive() const { return map_.is_exhaustive(); } constexpr bool is_strided() const { return map_.is_strided(); } constexpr index_type stride(rank_type r) const { return map_.stride(r); } private: accessor_type acc_; // exposition only mapping_type map_; // exposition only data_handle_type ptr_; // exposition only }; template<class CArray> requires (is_array_v<CArray> && rank_v<CArray> == 1) mdspan(CArray&) -> mdspan<remove_all_extents_t<CArray>, extents<size_t, extent_v<CArray, 0>>>; template<class Pointer> requires (is_pointer_v<remove_reference_t<Pointer>>) mdspan(Pointer&&) -> mdspan<remove_pointer_t<remove_reference_t<Pointer>>, extents<size_t>>; template<class ElementType, class... Integrals> requires ((is_convertible_v<Integrals, size_t> && ...) && sizeof...(Integrals) > 0) explicit mdspan(ElementType*, Integrals...) -> mdspan<ElementType, dextents<size_t, sizeof...(Integrals)>>; template<class ElementType, class OtherIndexType, size_t N> mdspan(ElementType*, span<OtherIndexType, N>) -> mdspan<ElementType, dextents<size_t, N>>; template<class ElementType, class OtherIndexType, size_t N> mdspan(ElementType*, const array<OtherIndexType, N>&) -> mdspan<ElementType, dextents<size_t, N>>; template<class ElementType, class IndexType, size_t... ExtentsPack> mdspan(ElementType*, const extents<IndexType, ExtentsPack...>&) -> mdspan<ElementType, extents<IndexType, ExtentsPack...>>; template<class ElementType, class MappingType> mdspan(ElementType*, const MappingType&) -> mdspan<ElementType, typename MappingType::extents_type, typename MappingType::layout_type>; template<class MappingType, class AccessorType> mdspan(const typename AccessorType::data_handle_type&, const MappingType&, const AccessorType&) -> mdspan<typename AccessorType::element_type, typename MappingType::extents_type, typename MappingType::layout_type, AccessorType>; }
Mandates:
  • ElementType is a complete object type that is neither an abstract class type nor an array type,
  • Extents is a specialization of extents, and
  • is_same_v<ElementType, typename AccessorPolicy​::​element_type> is true.
LayoutPolicy shall meet the layout mapping policy requirements ([mdspan.layout.policy.reqmts]), and AccessorPolicy shall meet the accessor policy requirements ([mdspan.accessor.reqmts]).
Each specialization MDS of mdspan models copyable and
  • is_nothrow_move_constructible_v<MDS> is true,
  • is_nothrow_move_assignable_v<MDS> is true, and
  • is_nothrow_swappable_v<MDS> is true.
A specialization of mdspan is a trivially copyable type if its accessor_type, mapping_type, and data_handle_type are trivially copyable types.

24.7.3.6.2 Constructors [mdspan.mdspan.cons]

constexpr mdspan();
Constraints:
  • rank_dynamic() > 0 is true.
  • is_default_constructible_v<data_handle_type> is true.
  • is_default_constructible_v<mapping_type> is true.
  • is_default_constructible_v<accessor_type> is true.
Preconditions: [0, map_.required_span_size()) is an accessible range of ptr_ and acc_ for the values of map_ and acc_ after the invocation of this constructor.
Effects: Value-initializes ptr_, map_, and acc_.
template<class... OtherIndexTypes> constexpr explicit mdspan(data_handle_type p, OtherIndexTypes... exts);
Let N be sizeof...(OtherIndexTypes).
Constraints:
  • (is_convertible_v<OtherIndexTypes, index_type> && ...) is true,
  • (is_nothrow_constructible<index_type, OtherIndexTypes> && ...) is true,
  • N == rank() || N == rank_dynamic() is true,
  • is_constructible_v<mapping_type, extents_type> is true, and
  • is_default_constructible_v<accessor_type> is true.
Preconditions: [0, map_.required_span_size()) is an accessible range of p and acc_ for the values of map_ and acc_ after the invocation of this constructor.
Effects:
  • Direct-non-list-initializes ptr_ with std​::​move(p),
  • direct-non-list-initializes map_ with extents_type(static_cast<index_type>(std​::​move(exts​))...), and
  • value-initializes acc_.
template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) mdspan(data_handle_type p, span<OtherIndexType, N> exts); template<class OtherIndexType, size_t N> constexpr explicit(N != rank_dynamic()) mdspan(data_handle_type p, const array<OtherIndexType, N>& exts);
Constraints:
  • is_convertible_v<const OtherIndexType&, index_type> is true,
  • is_nothrow_constructible_v<index_type, const OtherIndexType&> is true,
  • N == rank() || N == rank_dynamic() is true,
  • is_constructible_v<mapping_type, extents_type> is true, and
  • is_default_constructible_v<accessor_type> is true.
Preconditions: [0, map_.required_span_size()) is an accessible range of p and acc_ for the values of map_ and acc_ after the invocation of this constructor.
Effects:
  • Direct-non-list-initializes ptr_ with std​::​move(p),
  • direct-non-list-initializes map_ with extents_type(exts), and
  • value-initializes acc_.
constexpr mdspan(data_handle_type p, const extents_type& ext);
Constraints:
  • is_constructible_v<mapping_type, const extents_type&> is true, and
  • is_default_constructible_v<accessor_type> is true.
Preconditions: [0, map_.required_span_size()) is an accessible range of p and acc_ for the values of map_ and acc_ after the invocation of this constructor.
Effects:
  • Direct-non-list-initializes ptr_ with std​::​move(p),
  • direct-non-list-initializes map_ with ext, and
  • value-initializes acc_.
constexpr mdspan(data_handle_type p, const mapping_type& m);
Constraints: is_default_constructible_v<accessor_type> is true.
Preconditions: [0, m.required_span_size()) is an accessible range of p and acc_ for the value of acc_ after the invocation of this constructor.
Effects:
  • Direct-non-list-initializes ptr_ with std​::​move(p),
  • direct-non-list-initializes map_ with m, and
  • value-initializes acc_.
constexpr mdspan(data_handle_type p, const mapping_type& m, const accessor_type& a);
Preconditions: [0, m.required_span_size()) is an accessible range of p and a.
Effects:
  • Direct-non-list-initializes ptr_ with std​::​move(p),
  • direct-non-list-initializes map_ with m, and
  • direct-non-list-initializes acc_ with a.
template<class OtherElementType, class OtherExtents, class OtherLayoutPolicy, class OtherAccessor> constexpr explicit(see below) mdspan(const mdspan<OtherElementType, OtherExtents, OtherLayoutPolicy, OtherAccessor>& other);
Constraints:
  • is_constructible_v<mapping_type, const OtherLayoutPolicy​::​template mapping<Oth-
    erExtents>&>
    is true, and
  • is_constructible_v<accessor_type, const OtherAccessor&> is true.
Mandates:
  • is_constructible_v<data_handle_type, const OtherAccessor​::​data_handle_type&> is
    true, and
  • is_constructible_v<extents_type, OtherExtents> is true.
Preconditions:
  • For each rank index r of extents_type, static_extent(r) == dynamic_extent || static_extent(r) == other.extent(r) is true.
  • [0, map_.required_span_size()) is an accessible range of ptr_ and acc_ for values of ptr_, map_, and acc_ after the invocation of this constructor.
Effects:
  • Direct-non-list-initializes ptr_ with other.ptr_,
  • direct-non-list-initializes map_ with other.map_, and
  • direct-non-list-initializes acc_ with other.acc_.
Remarks: The expression inside explicit is equivalent to: !is_convertible_v<const OtherLayoutPolicy::template mapping<OtherExtents>&, mapping_type> || !is_convertible_v<const OtherAccessor&, accessor_type>

24.7.3.6.3 Members [mdspan.mdspan.members]

template<class... OtherIndexTypes> constexpr reference operator[](OtherIndexTypes... indices) const;
Constraints:
  • (is_convertible_v<OtherIndexTypes, index_type> && ...) is true,
  • (is_nothrow_constructible_v<index_type, OtherIndexTypes> && ...) is true, and
  • sizeof...(OtherIndexTypes) == rank() is true.
Let I be extents_type​::​index-cast(std​::​move(indices)).
Preconditions: I is a multidimensional index in extents().
[Note 1: 
This implies that map_(I) < map_.required_span_size() is true.
— end note]
Effects: Equivalent to: return acc_.access(ptr_, map_(static_cast<index_type>(std::move(indices))...));
template<class OtherIndexType> constexpr reference operator[](span<OtherIndexType, rank()> indices) const; template<class OtherIndexType> constexpr reference operator[](const array<OtherIndexType, rank()>& indices) const;
Constraints:
  • is_convertible_v<const OtherIndexType&, index_type> is true, and
  • is_nothrow_constructible_v<index_type, const OtherIndexType&> is true.
Effects: Let P be a parameter pack such that is_same_v<make_index_sequence<rank()>, index_sequence<P...>> is true.
Equivalent to: return operator[](extents_type::index-cast(as_const(indices[P]))...);
constexpr size_type size() const noexcept;
Preconditions: The size of the multidimensional index space extents() is representable as a value of type size_type ([basic.fundamental]).
Returns: extents().fwd-prod-of-extents(rank()).
[[nodiscard]] constexpr bool empty() const noexcept;
Returns: true if the size of the multidimensional index space extents() is 0, otherwise false.
friend constexpr void swap(mdspan& x, mdspan& y) noexcept;
Effects: Equivalent to: swap(x.ptr_, y.ptr_); swap(x.map_, y.map_); swap(x.acc_, y.acc_);

24.7.3.7 submdspan [mdspan.submdspan]

24.7.3.7.1 Overview [mdspan.submdspan.overview]

The submdspan facilities create a new mdspan viewing a subset of elements of an existing input mdspan.
The subset viewed by the created mdspan is determined by the SliceSpecifier arguments.
For each function defined in subclause [mdspan.submdspan] that takes a parameter pack named slices as an argument:
  • let index_type be
    • M​::​index_type if the function is a member of a class M,
    • otherwise, remove_reference_t<decltype(src)>​::​index_type if the function has a parameter named src,
    • otherwise, the same type as the function's template argument IndexType;
  • let rank be the number of elements in slices;
  • let be the element of slices;
  • let be the type of ; and
  • let map-rank be an array<size_t, rank> such that for each k in the range [0, rank), map-rank[k] equals:

24.7.3.7.2 strided_slice [mdspan.submdspan.strided.slice]

strided_slice represents a set of extent regularly spaced integer indices.
The indices start at offset, and increase by increments of stride.
namespace std { template<class OffsetType, class ExtentType, class StrideType> struct strided_slice { using offset_type = OffsetType; using extent_type = ExtentType; using stride_type = StrideType; [[no_unique_address]] offset_type offset{}; [[no_unique_address]] extent_type extent{}; [[no_unique_address]] stride_type stride{}; }; }
strided_slice has the data members and special members specified above.
It has no base classes or members other than those specified.
Mandates: OffsetType, ExtentType, and StrideType are signed or unsigned integer types, or model integral-constant-like.
[Note 1: 
strided_slice{.offset = 1, .extent = 10, .stride = 3} indicates the indices 1, 4, 7, and 10.
Indices are selected from the half-open interval [1, 1 + 10).
— end note]

24.7.3.7.3 submdspan_mapping_result [mdspan.submdspan.submdspan.mapping.result]

Specializations of submdspan_mapping_result are returned by overloads of submdspan_mapping.
namespace std { template<class LayoutMapping> struct submdspan_mapping_result { [[no_unique_address]] LayoutMapping mapping = LayoutMapping(); size_t offset{}; }; }
submdspan_mapping_result has the data members and special members specified above.
It has no base classes or members other than those specified.
LayoutMapping shall meet the layout mapping requirements ([mdspan.layout.policy.reqmts]).

24.7.3.7.4 Exposition-only helpers [mdspan.submdspan.helpers]

template<class T> constexpr T de-ice(T val) { return val; } template<integral-constant-like T> constexpr auto de-ice(T) { return T::value; } template<class IndexType, size_t k, class... SliceSpecifiers> constexpr IndexType first_(SliceSpecifiers... slices);
Mandates: IndexType is a signed or unsigned integer type.
Let denote the following value:
Preconditions: is representable as a value of type IndexType.
Returns: extents<IndexType>​::​index-cast().
template<size_t k, class Extents, class... SliceSpecifiers> constexpr auto last_(const Extents& src, SliceSpecifiers... slices);
Mandates: Extents is a specialization of extents.
Let index_type be typename Extents​::​index_type.
Let denote the following value:
  • de-ice() + 1 if models convertible_to<index_type>; otherwise
  • get<1>() if models index-pair-like<index_type>; otherwise
  • de-ice(.offset) + de-ice(.extent) if is a specialization of strided_slice; otherwise
  • src.extent(k).
Preconditions: is representable as a value of type index_type.
Returns: Extents​::​index-cast().
template<class IndexType, size_t N, class... SliceSpecifiers> constexpr array<IndexType, sizeof...(SliceSpecifiers)> src-indices(const array<IndexType, N>& indices, SliceSpecifiers... slices);
Mandates: IndexType is a signed or unsigned integer type.
Returns: An array<IndexType, sizeof...(SliceSpecifiers)> src_idx such that for each k in the range [0, sizeof...(SliceSpecifiers)), src_idx[k] equals
  • first_<IndexType, k>(slices...) for each k where map-rank[k] equals dynamic_extent,
  • otherwise, first_<IndexType, k>(slices...) + indices[map-rank[k]].

24.7.3.7.5 submdspan_extents function [mdspan.submdspan.extents]

template<class IndexType, class... Extents, class... SliceSpecifiers> constexpr auto submdspan_extents(const extents<IndexType, Extents...>& src, SliceSpecifiers... slices);
Constraints: sizeof...(slices) equals Extents​::​rank().
Mandates: For each rank index k of src.extents(), exactly one of the following is true:
Preconditions: For each rank index k of src.extents(), all of the following are true:
  • if is a specialization of strided_slice
  • 0  ≤ first_<IndexType, k>(slices...)  ≤ last_<k>(src, slices...)  ≤ src.extent(k)
Let SubExtents be a specialization of extents such that:
  • SubExtents​::​rank() equals the number of k such that does not model convertible_to<IndexType>; and
  • for each rank index k of Extents such that map-rank[k] != dynamic_extent is true, SubExtents​::​static_extent(map-rank[k]) equals:
    • Extents​::​static_extent(k) if is_convertible_v<, full_extent_t> is true; otherwise
    • de-ice(tuple_element_t<1, >()) - de-ice(tuple_element_t<0, >()) if models index-pair-like<IndexType>, and both tuple_element_t<0, > and tuple_element_t<1, > model integral-constant-like; otherwise
    • 0, if is a specialization of strided_slice, whose extent_type models integral-constant-like, for which extent_type() equals zero; otherwise
    • 1 + (de-ice(​::​extent_type()) - 1) / de-ice(​::​stride_type()), if is a specialization of strided_slice whose extent_type and stride_type model integral-constant-like;
    • otherwise, dynamic_extent.
Returns: A value ext of type SubExtents such that for each k for which map-rank[k] != dynamic_extent is true, ext.extent(map-rank[k]) equals:
  • .extent == 0 ? 0 : 1 + (de-ice(.extent) - 1) / de-ice(.stride) if is a specialization of strided_slice,
  • otherwise, last_<k>(src, slices...) - first_<IndexType, k>(slices...).

24.7.3.7.6 Layout specializations of submdspan_mapping [mdspan.submdspan.mapping]

template<class Extents> template<class... SliceSpecifiers> constexpr auto layout_left::mapping<Extents>::submdspan-mapping-impl( // exposition only SliceSpecifiers... slices) const -> see below; template<class Extents> template<class... SliceSpecifiers> constexpr auto layout_right::mapping<Extents>::submdspan-mapping-impl( // exposition only SliceSpecifiers... slices) const -> see below; template<class Extents> template<class... SliceSpecifiers> constexpr auto layout_stride::mapping<Extents>::submdspan-mapping-impl( // exposition only SliceSpecifiers... slices) const -> see below;
Let index_type be typename Extents​::​index_type.
Constraints: sizeof...(slices) equals Extents​::​rank().
Mandates: For each rank index k of extents(), exactly one of the following is true:
Preconditions: For each rank index k of extents(), all of the following are true:
  • if is a specialization of strided_slice
  • 0  ≤ first_<index_type, k>(slices...)
    0  ≤ last_<k>(extents(), slices...)
    0  ≤ extents().extent(k)
Let sub_ext be the result of submdspan_extents(extents(), slices...) and let SubExtents be decltype(sub_ext).
Let sub_strides be an array<SubExtents​::​index_type, SubExtents​::​rank()> such that for each rank index k of extents() for which map-rank[k] is not dynamic_extent, sub_strides[map-rank[
k]]
equals:
  • stride(k) * de-ice(.stride) if is a specialization of strided_slice and .stride < .extent;
  • otherwise, stride(k).
Let P be a parameter pack such that is_same_v<make_index_sequence<rank()>, index_sequence<
P...>>
is true.
Let offset be a value of type size_t equal to (*this)(first_<index_type, P>(slices...)...).
Returns:
  • submdspan_mapping_result{*this, 0}, if Extents​::​rank() == 0 is true;
  • otherwise, submdspan_mapping_result{layout_left​::​mapping(sub_ext), offset}, if
    • layout_type is layout_left; and
    • for each k in the range [0, SubExtents​::​rank() - 1)), is_convertible_v<, full_extent_t> is true; and
    • for k equal to SubExtents​::​rank() - 1, models index-pair-like<index_type> or is_convertible_v<, full_extent_t> is true;
    [Note 1: 
    If the above conditions are true, all with k larger than SubExtents​::​rank() - 1 are convertible to index_type.
    — end note]
  • otherwise, submdspan_mapping_result{layout_right​::​mapping(sub_ext), offset}, if
    • layout_type is layout_right; and
    • for each k in the range [Extents​::​rank() - SubExtents​::​rank() + 1, Extents​::​rank()), is_convertible_v<, full_extent_t> is true; and
    • for k equal to Extents​::​rank() - SubExtents​::​rank(), models index-pair-like<index_type> or is_convertible_v<, full_extent_t> is true;
    [Note 2: 
    If the above conditions are true, all with are convertible to index_type.
    — end note]
  • otherwise, submdspan_mapping_result{layout_stride​::​mapping(sub_ext, sub_strides),
    offset}
    .

24.7.3.7.7 submdspan function template [mdspan.submdspan.submdspan]

template<class ElementType, class Extents, class LayoutPolicy, class AccessorPolicy, class... SliceSpecifiers> constexpr auto submdspan( const mdspan<ElementType, Extents, LayoutPolicy, AccessorPolicy>& src, SliceSpecifiers... slices) -> see below;
Let index_type be typename Extents​::​index_type.
Let sub_map_offset be the result of submdspan_mapping(src.mapping(), slices...).
[Note 1: 
This invocation of submdspan_mapping selects a function call via overload resolution on a candidate set that includes the lookup set found by argument-dependent lookup ([basic.lookup.argdep]).
— end note]
Constraints:
  • sizeof...(slices) equals Extents​::​rank(), and
  • the expression submdspan_mapping(src.mapping(), slices...) is well-formed when treated as an unevaluated operand.
Mandates:
  • decltype(submdspan_mapping(src.mapping(), slices...)) is a specialization of submd-
    span_mapping_result
    .
  • is_same_v<remove_cvref_t<decltype(sub_map_offset.mapping.extents())>, decltype(
    submdspan_extents(src.mapping(), slices...))>
    is true.
  • For each rank index k of src.extents(), exactly one of the following is true:
Preconditions:
  • For each rank index k of src.extents(), all of the following are true:
    • if is a specialization of strided_slice
    • 0  ≤ first_<index_type, k>(slices...)  ≤ last_<k>(src.extents(), slices...)  ≤ 
      src.extent(k)
  • sub_map_offset.mapping.extents() == submdspan_extents(src.mapping(), slices...)
    is true; and
  • for each integer pack I which is a multidimensional index in sub_map_offset.mapping.extents(), sub_map_offset.mapping(I...) + sub_map_offset.offset == src.mapping()(src-indices(array{I...}, slices...)) is true.
[Note 2: 
These conditions ensure that the mapping returned by submdspan_mapping matches the algorithmically expected index-mapping given the slice specifiers.
— end note]
Effects: Equivalent to: auto sub_map_offset = submdspan_mapping(src.mapping(), slices...); return mdspan(src.accessor().offset(src.data(), sub_map_offset.offset), sub_map_offset.mapping, AccessorPolicy::offset_policy(src.accessor()));
[Example 1: 
Given a rank-3 mdspan grid3d representing a three-dimensional grid of regularly spaced points in a rectangular prism, the function zero_surface sets all elements on the surface of the 3-dimensional shape to zero.
It does so by reusing a function zero_2d that takes a rank-2 mdspan.
// zero out all elements in an mdspan template<class T, class E, class L, class A> void zero_2d(mdspan<T, E, L, A> a) { static_assert(a.rank() == 2); for (int i = 0; i < a.extent(0); i++) for (int j = 0; j < a.extent(1); j++) a[i, j] = 0; } // zero out just the surface template<class T, class E, class L, class A> void zero_surface(mdspan<T, E, L, A> grid3d) { static_assert(grid3d.rank() == 3); zero_2d(submdspan(grid3d, 0, full_extent, full_extent)); zero_2d(submdspan(grid3d, full_extent, 0, full_extent)); zero_2d(submdspan(grid3d, full_extent, full_extent, 0)); zero_2d(submdspan(grid3d, grid3d.extent(0) - 1, full_extent, full_extent)); zero_2d(submdspan(grid3d, full_extent, grid3d.extent(1) - 1, full_extent)); zero_2d(submdspan(grid3d, full_extent, full_extent, grid3d.extent(2) - 1)); } — end example]