28 Numerics library [numerics]

28.9 Basic linear algebra algorithms [linalg]

28.9.15 BLAS 3 algorithms [linalg.algs.blas3]

28.9.15.3 In-place triangular matrix-matrix product [linalg.algs.blas3.trmm]

These functions perform an in-place matrix-matrix multiply, taking into account the Triangle and DiagonalStorage parameters that apply to the triangular matrix A ([linalg.general]).
[Note 1: 
These functions correspond to the BLAS function xTRMM[bib].
— end note]
template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat> void triangular_matrix_left_product(InMat A, Triangle t, DiagonalStorage d, InOutMat C); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat> void triangular_matrix_left_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutMat C);
Mandates:
  • If InMat has layout_blas_packed layout, then the layout's Triangle template argument has the same type as the function's Triangle template argument;
  • possibly-multipliable<InMat, InOutMat, InOutMat>() is true; and
  • compatible-static-extents<InMat, InMat>(0, 1) is true.
Preconditions:
  • multipliable(A, C, C) is true, and
  • A.extent(0) == A.extent(1) is true.
Effects: Computes a matrix such that and assigns each element of to the corresponding element of C.
Complexity: .
template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat> void triangular_matrix_right_product(InMat A, Triangle t, DiagonalStorage d, InOutMat C); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat> void triangular_matrix_right_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutMat C);
Mandates:
  • If InMat has layout_blas_packed layout, then the layout's Triangle template argument has the same type as the function's Triangle template argument;
  • possibly-multipliable<InOutMat, InMat, InOutMat>() is true; and
  • compatible-static-extents<InMat, InMat>(0, 1) is true.
Preconditions:
  • multipliable(C, A, C) is true, and
  • A.extent(0) == A.extent(1) is true.
Effects: Computes a matrix such that and assigns each element of to the corresponding element of C.
Complexity: .