28 Numerics library [numerics]

28.9 Basic linear algebra algorithms [linalg]

28.9.13 BLAS 1 algorithms [linalg.algs.blas1]

28.9.13.10 Sum of absolute values of vector elements [linalg.algs.blas1.asum]

template<in-vector InVec, class Scalar> Scalar vector_abs_sum(InVec v, Scalar init); template<class ExecutionPolicy, in-vector InVec, class Scalar> Scalar vector_abs_sum(ExecutionPolicy&& exec, InVec v, Scalar init);
[Note 1: 
These functions correspond to the BLAS functions SASUM, DASUM, SCASUM, and DZASUM[bib].
— end note]
Mandates: decltype(init + abs-if-needed(real-if-needed(declval<typename InVec::value_type>())) + abs-if-needed(imag-if-needed(declval<typename InVec::value_type>()))) is convertible to Scalar.
Returns: Let N be v.extent(0).
  • init if N is zero;
  • otherwise, if InVec​::​value_type is an arithmetic type, GENERALIZED_SUM(plus<>(), init, abs-if-needed(v[0]), …, abs-if-needed(v[N-1]))
  • otherwise, GENERALIZED_SUM(plus<>(), init, abs-if-needed(real-if-needed(v[0])) + abs-if-needed(imag-if-needed(v[0])), …, abs-if-needed(real-if-needed(v[N-1])) + abs-if-needed(imag-if-needed(v[N-1])))
Remarks: If InVec​::​value_type and Scalar are all floating-point types or specializations of complex, and if Scalar has higher precision than InVec​::​value_type, then intermediate terms in the sum use Scalar's precision or greater.
template<in-vector InVec> auto vector_abs_sum(InVec v); template<class ExecutionPolicy, in-vector InVec> auto vector_abs_sum(ExecutionPolicy&& exec, InVec v);
Effects: Let T be typename InVec​::​value_type.
Then,
  • the one-parameter overload is equivalent to: return vector_abs_sum(v, T{}); and
  • the two-parameter overload is equivalent to: return vector_abs_sum(std::forward<ExecutionPolicy>(exec), v, T{});